Loading…

Near-Infrared Luminescence of Bismuth in Silica-Based Glasses with Different Additives

The near-infrared (NIR) luminescence spectra and changes caused in them by an exposure to ArF excimer laser radiation were studied in bismuth-doped silica-based glasses containing Al, P or Ge and B additives. Experiments were conducted using specimens in the form of optical waveguides synthesized by...

Full description

Saved in:
Bibliographic Details
Published in:Journal of communications technology & electronics 2018-12, Vol.63 (12), p.1458-1468
Main Authors: Savelyev, E. A., Butov, O. V., Yapaskurt, V. O., Golant, K. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The near-infrared (NIR) luminescence spectra and changes caused in them by an exposure to ArF excimer laser radiation were studied in bismuth-doped silica-based glasses containing Al, P or Ge and B additives. Experiments were conducted using specimens in the form of optical waveguides synthesized by surface plasma chemical vapor deposition (SPCVD), using bismuth-doped glass sample as the light-guiding core. Excited by ~808, ~904, and ~970 nm wavelength laser diodes, the NIR luminescence spectra were recorded in the 700–2000 nm wavelength range at temperatures of 105 and 300 K. The UV laser treatment was found to cause changes in both integrated intensity and spectrum shape of NIR luminescence associated with bismuth impurities. The observed changes are discussed with the assumption of photo-induced reconfiguring of different bismuth inclusions, which might present in the glass network in the form of separate ions and atoms, interstitial molecules, and bulk semiconductor nanoclusters.
ISSN:1064-2269
1555-6557
DOI:10.1134/S1064226918120203