Loading…
Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)
Accurate projections of the evolution of ice sheets in a changing climate require a fine mesh/grid resolution in ice sheet models to correctly capture fundamental physical processes, such as the evolution of the grounding line, the region where grounded ice starts to float. The evolution of the grou...
Saved in:
Published in: | Geoscientific Model Development 2019-01, Vol.12 (1), p.215-232 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3 |
container_end_page | 232 |
container_issue | 1 |
container_start_page | 215 |
container_title | Geoscientific Model Development |
container_volume | 12 |
creator | dos Santos, Thiago Dias Morlighem, Mathieu Seroussi, Helene Devloo, Philippe Remy Bernard Simoes, Jefferson Cardia |
description | Accurate projections of the evolution of ice sheets in a changing climate
require a fine mesh/grid resolution in ice sheet models to correctly capture
fundamental physical processes, such as the evolution of the grounding line,
the region where grounded ice starts to float. The evolution of the grounding
line indeed plays a major role in ice sheet dynamics, as it is a fundamental
control on marine ice sheet stability. Numerical modeling of a grounding line
requires significant computational resources since the accuracy of its
position depends on grid or mesh resolution. A technique that improves
accuracy with reduced computational cost is the adaptive mesh refinement
(AMR) approach. We present here the implementation of the AMR technique in
the finite element Ice Sheet System Model (ISSM) to simulate grounding line
dynamics under two different benchmarks: MISMIP3d and MISMIP+. We test
different refinement criteria: (a) distance around the grounding line, (b) a
posteriori error estimator, the Zienkiewicz–Zhu (ZZ) error estimator, and
(c) different combinations of (a) and (b). In both benchmarks, the ZZ error
estimator presents high values around the grounding line. In the MISMIP+ setup,
this estimator also presents high values in the grounded
part of the ice sheet, following the complex shape of the bedrock geometry.
The ZZ estimator helps guide the refinement procedure such that AMR
performance is improved. Our results show that computational time with AMR
depends on the required accuracy, but in all cases, it is significantly
shorter than for uniformly refined meshes. We conclude that AMR without an
associated error estimator should be avoided, especially for real glaciers
that have a complex bed geometry. |
doi_str_mv | 10.5194/gmd-12-215-2019 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2166659948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A569547954</galeid><doaj_id>oai_doaj_org_article_f5751877efa4409792959422d4637ec2</doaj_id><sourcerecordid>A569547954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3</originalsourceid><addsrcrecordid>eNptkt1rFDEUxQdRsFaffQ34Yh9mm2TysfexFD8GWgRHn0Oa3OzOsjMZk2yx_71pV9QFCSGXy-8cTpLbNG8ZXUkG4nIz-ZbxljPZcsrgWXPGAFgLinbP_6lfNq9y3lGqQCt91mA_LXuccC62jHEmdvZkwRRimuzskMRArLdLGe-RTJi3JGEY5ycBGWdStkj6ig1bxEKGh1xwIrfR456874fhltyLFRMXr5sXwe4zvvl9njffP374dv25vfnyqb--ummd0Lq0nguPAOs7kM56Z-84rBWAqkkVMGedkh3tuA7OiqCdDNQp4SmrGtBM2O686Y--PtqdWdI42fRgoh3NUyOmjbGpjG6PJkgt2VprDFYICho4SBCce6E6jY5Xr3dHryXFHwfMxeziIc01vuFMKSUBxPovtbHVdJxDLMm6aczOXEkFUui6K7X6D1WXx2l0ca5vWvsngosTQWUK_iwbe8jZ9MPXU_byyLoUc67_8-fijJrH0TB1NAzjNbY0j6PR_QKjzKeJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166659948</pqid></control><display><type>article</type><title>Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)</title><source>Publicly Available Content (ProQuest)</source><creator>dos Santos, Thiago Dias ; Morlighem, Mathieu ; Seroussi, Helene ; Devloo, Philippe Remy Bernard ; Simoes, Jefferson Cardia</creator><creatorcontrib>dos Santos, Thiago Dias ; Morlighem, Mathieu ; Seroussi, Helene ; Devloo, Philippe Remy Bernard ; Simoes, Jefferson Cardia</creatorcontrib><description>Accurate projections of the evolution of ice sheets in a changing climate
require a fine mesh/grid resolution in ice sheet models to correctly capture
fundamental physical processes, such as the evolution of the grounding line,
the region where grounded ice starts to float. The evolution of the grounding
line indeed plays a major role in ice sheet dynamics, as it is a fundamental
control on marine ice sheet stability. Numerical modeling of a grounding line
requires significant computational resources since the accuracy of its
position depends on grid or mesh resolution. A technique that improves
accuracy with reduced computational cost is the adaptive mesh refinement
(AMR) approach. We present here the implementation of the AMR technique in
the finite element Ice Sheet System Model (ISSM) to simulate grounding line
dynamics under two different benchmarks: MISMIP3d and MISMIP+. We test
different refinement criteria: (a) distance around the grounding line, (b) a
posteriori error estimator, the Zienkiewicz–Zhu (ZZ) error estimator, and
(c) different combinations of (a) and (b). In both benchmarks, the ZZ error
estimator presents high values around the grounding line. In the MISMIP+ setup,
this estimator also presents high values in the grounded
part of the ice sheet, following the complex shape of the bedrock geometry.
The ZZ estimator helps guide the refinement procedure such that AMR
performance is improved. Our results show that computational time with AMR
depends on the required accuracy, but in all cases, it is significantly
shorter than for uniformly refined meshes. We conclude that AMR without an
associated error estimator should be avoided, especially for real glaciers
that have a complex bed geometry.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-12-215-2019</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Accuracy ; Adaptive systems ; Analysis ; Arctic research ; Bedrock ; Benchmarks ; Climate change ; Climate models ; Computational efficiency ; Computer applications ; Computer simulation ; Computing time ; Control stability ; Dynamics ; Errors ; Evolution ; Finite element method ; Glaciation ; Glaciers ; Grid refinement (mathematics) ; Ice ; Ice sheet dynamics ; Ice sheet models ; Ice sheets ; Mathematical models ; Modelling ; Nonlinear programming ; Resolution</subject><ispartof>Geoscientific Model Development, 2019-01, Vol.12 (1), p.215-232</ispartof><rights>COPYRIGHT 2019 Copernicus GmbH</rights><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3</citedby><cites>FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3</cites><orcidid>0000-0001-9201-1644 ; 0000-0001-5219-1310 ; 0000-0001-8257-1314 ; 0000-0001-5555-3401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2166659948/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2166659948?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>dos Santos, Thiago Dias</creatorcontrib><creatorcontrib>Morlighem, Mathieu</creatorcontrib><creatorcontrib>Seroussi, Helene</creatorcontrib><creatorcontrib>Devloo, Philippe Remy Bernard</creatorcontrib><creatorcontrib>Simoes, Jefferson Cardia</creatorcontrib><title>Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)</title><title>Geoscientific Model Development</title><description>Accurate projections of the evolution of ice sheets in a changing climate
require a fine mesh/grid resolution in ice sheet models to correctly capture
fundamental physical processes, such as the evolution of the grounding line,
the region where grounded ice starts to float. The evolution of the grounding
line indeed plays a major role in ice sheet dynamics, as it is a fundamental
control on marine ice sheet stability. Numerical modeling of a grounding line
requires significant computational resources since the accuracy of its
position depends on grid or mesh resolution. A technique that improves
accuracy with reduced computational cost is the adaptive mesh refinement
(AMR) approach. We present here the implementation of the AMR technique in
the finite element Ice Sheet System Model (ISSM) to simulate grounding line
dynamics under two different benchmarks: MISMIP3d and MISMIP+. We test
different refinement criteria: (a) distance around the grounding line, (b) a
posteriori error estimator, the Zienkiewicz–Zhu (ZZ) error estimator, and
(c) different combinations of (a) and (b). In both benchmarks, the ZZ error
estimator presents high values around the grounding line. In the MISMIP+ setup,
this estimator also presents high values in the grounded
part of the ice sheet, following the complex shape of the bedrock geometry.
The ZZ estimator helps guide the refinement procedure such that AMR
performance is improved. Our results show that computational time with AMR
depends on the required accuracy, but in all cases, it is significantly
shorter than for uniformly refined meshes. We conclude that AMR without an
associated error estimator should be avoided, especially for real glaciers
that have a complex bed geometry.</description><subject>Accuracy</subject><subject>Adaptive systems</subject><subject>Analysis</subject><subject>Arctic research</subject><subject>Bedrock</subject><subject>Benchmarks</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Computational efficiency</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Control stability</subject><subject>Dynamics</subject><subject>Errors</subject><subject>Evolution</subject><subject>Finite element method</subject><subject>Glaciation</subject><subject>Glaciers</subject><subject>Grid refinement (mathematics)</subject><subject>Ice</subject><subject>Ice sheet dynamics</subject><subject>Ice sheet models</subject><subject>Ice sheets</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nonlinear programming</subject><subject>Resolution</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt1rFDEUxQdRsFaffQ34Yh9mm2TysfexFD8GWgRHn0Oa3OzOsjMZk2yx_71pV9QFCSGXy-8cTpLbNG8ZXUkG4nIz-ZbxljPZcsrgWXPGAFgLinbP_6lfNq9y3lGqQCt91mA_LXuccC62jHEmdvZkwRRimuzskMRArLdLGe-RTJi3JGEY5ycBGWdStkj6ig1bxEKGh1xwIrfR456874fhltyLFRMXr5sXwe4zvvl9njffP374dv25vfnyqb--ummd0Lq0nguPAOs7kM56Z-84rBWAqkkVMGedkh3tuA7OiqCdDNQp4SmrGtBM2O686Y--PtqdWdI42fRgoh3NUyOmjbGpjG6PJkgt2VprDFYICho4SBCce6E6jY5Xr3dHryXFHwfMxeziIc01vuFMKSUBxPovtbHVdJxDLMm6aczOXEkFUui6K7X6D1WXx2l0ca5vWvsngosTQWUK_iwbe8jZ9MPXU_byyLoUc67_8-fijJrH0TB1NAzjNbY0j6PR_QKjzKeJ</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>dos Santos, Thiago Dias</creator><creator>Morlighem, Mathieu</creator><creator>Seroussi, Helene</creator><creator>Devloo, Philippe Remy Bernard</creator><creator>Simoes, Jefferson Cardia</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9201-1644</orcidid><orcidid>https://orcid.org/0000-0001-5219-1310</orcidid><orcidid>https://orcid.org/0000-0001-8257-1314</orcidid><orcidid>https://orcid.org/0000-0001-5555-3401</orcidid></search><sort><creationdate>20190114</creationdate><title>Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)</title><author>dos Santos, Thiago Dias ; Morlighem, Mathieu ; Seroussi, Helene ; Devloo, Philippe Remy Bernard ; Simoes, Jefferson Cardia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Adaptive systems</topic><topic>Analysis</topic><topic>Arctic research</topic><topic>Bedrock</topic><topic>Benchmarks</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Computational efficiency</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Control stability</topic><topic>Dynamics</topic><topic>Errors</topic><topic>Evolution</topic><topic>Finite element method</topic><topic>Glaciation</topic><topic>Glaciers</topic><topic>Grid refinement (mathematics)</topic><topic>Ice</topic><topic>Ice sheet dynamics</topic><topic>Ice sheet models</topic><topic>Ice sheets</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nonlinear programming</topic><topic>Resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, Thiago Dias</creatorcontrib><creatorcontrib>Morlighem, Mathieu</creatorcontrib><creatorcontrib>Seroussi, Helene</creatorcontrib><creatorcontrib>Devloo, Philippe Remy Bernard</creatorcontrib><creatorcontrib>Simoes, Jefferson Cardia</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, Thiago Dias</au><au>Morlighem, Mathieu</au><au>Seroussi, Helene</au><au>Devloo, Philippe Remy Bernard</au><au>Simoes, Jefferson Cardia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)</atitle><jtitle>Geoscientific Model Development</jtitle><date>2019-01-14</date><risdate>2019</risdate><volume>12</volume><issue>1</issue><spage>215</spage><epage>232</epage><pages>215-232</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>Accurate projections of the evolution of ice sheets in a changing climate
require a fine mesh/grid resolution in ice sheet models to correctly capture
fundamental physical processes, such as the evolution of the grounding line,
the region where grounded ice starts to float. The evolution of the grounding
line indeed plays a major role in ice sheet dynamics, as it is a fundamental
control on marine ice sheet stability. Numerical modeling of a grounding line
requires significant computational resources since the accuracy of its
position depends on grid or mesh resolution. A technique that improves
accuracy with reduced computational cost is the adaptive mesh refinement
(AMR) approach. We present here the implementation of the AMR technique in
the finite element Ice Sheet System Model (ISSM) to simulate grounding line
dynamics under two different benchmarks: MISMIP3d and MISMIP+. We test
different refinement criteria: (a) distance around the grounding line, (b) a
posteriori error estimator, the Zienkiewicz–Zhu (ZZ) error estimator, and
(c) different combinations of (a) and (b). In both benchmarks, the ZZ error
estimator presents high values around the grounding line. In the MISMIP+ setup,
this estimator also presents high values in the grounded
part of the ice sheet, following the complex shape of the bedrock geometry.
The ZZ estimator helps guide the refinement procedure such that AMR
performance is improved. Our results show that computational time with AMR
depends on the required accuracy, but in all cases, it is significantly
shorter than for uniformly refined meshes. We conclude that AMR without an
associated error estimator should be avoided, especially for real glaciers
that have a complex bed geometry.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-12-215-2019</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9201-1644</orcidid><orcidid>https://orcid.org/0000-0001-5219-1310</orcidid><orcidid>https://orcid.org/0000-0001-8257-1314</orcidid><orcidid>https://orcid.org/0000-0001-5555-3401</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1991-9603 |
ispartof | Geoscientific Model Development, 2019-01, Vol.12 (1), p.215-232 |
issn | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X |
language | eng |
recordid | cdi_proquest_journals_2166659948 |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Adaptive systems Analysis Arctic research Bedrock Benchmarks Climate change Climate models Computational efficiency Computer applications Computer simulation Computing time Control stability Dynamics Errors Evolution Finite element method Glaciation Glaciers Grid refinement (mathematics) Ice Ice sheet dynamics Ice sheet models Ice sheets Mathematical models Modelling Nonlinear programming Resolution |
title | Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20and%20performance%20of%20adaptive%20mesh%20refinement%20in%20the%20Ice%20Sheet%20System%20Model%20(ISSM%20v4.14)&rft.jtitle=Geoscientific%20Model%20Development&rft.au=dos%20Santos,%20Thiago%20Dias&rft.date=2019-01-14&rft.volume=12&rft.issue=1&rft.spage=215&rft.epage=232&rft.pages=215-232&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-12-215-2019&rft_dat=%3Cgale_doaj_%3EA569547954%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2166659948&rft_id=info:pmid/&rft_galeid=A569547954&rfr_iscdi=true |