Loading…

Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)

Accurate projections of the evolution of ice sheets in a changing climate require a fine mesh/grid resolution in ice sheet models to correctly capture fundamental physical processes, such as the evolution of the grounding line, the region where grounded ice starts to float. The evolution of the grou...

Full description

Saved in:
Bibliographic Details
Published in:Geoscientific Model Development 2019-01, Vol.12 (1), p.215-232
Main Authors: dos Santos, Thiago Dias, Morlighem, Mathieu, Seroussi, Helene, Devloo, Philippe Remy Bernard, Simoes, Jefferson Cardia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3
cites cdi_FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3
container_end_page 232
container_issue 1
container_start_page 215
container_title Geoscientific Model Development
container_volume 12
creator dos Santos, Thiago Dias
Morlighem, Mathieu
Seroussi, Helene
Devloo, Philippe Remy Bernard
Simoes, Jefferson Cardia
description Accurate projections of the evolution of ice sheets in a changing climate require a fine mesh/grid resolution in ice sheet models to correctly capture fundamental physical processes, such as the evolution of the grounding line, the region where grounded ice starts to float. The evolution of the grounding line indeed plays a major role in ice sheet dynamics, as it is a fundamental control on marine ice sheet stability. Numerical modeling of a grounding line requires significant computational resources since the accuracy of its position depends on grid or mesh resolution. A technique that improves accuracy with reduced computational cost is the adaptive mesh refinement (AMR) approach. We present here the implementation of the AMR technique in the finite element Ice Sheet System Model (ISSM) to simulate grounding line dynamics under two different benchmarks: MISMIP3d and MISMIP+. We test different refinement criteria: (a) distance around the grounding line, (b) a posteriori error estimator, the Zienkiewicz–Zhu (ZZ) error estimator, and (c) different combinations of (a) and (b). In both benchmarks, the ZZ error estimator presents high values around the grounding line. In the MISMIP+ setup, this estimator also presents high values in the grounded part of the ice sheet, following the complex shape of the bedrock geometry. The ZZ estimator helps guide the refinement procedure such that AMR performance is improved. Our results show that computational time with AMR depends on the required accuracy, but in all cases, it is significantly shorter than for uniformly refined meshes. We conclude that AMR without an associated error estimator should be avoided, especially for real glaciers that have a complex bed geometry.
doi_str_mv 10.5194/gmd-12-215-2019
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2166659948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A569547954</galeid><doaj_id>oai_doaj_org_article_f5751877efa4409792959422d4637ec2</doaj_id><sourcerecordid>A569547954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3</originalsourceid><addsrcrecordid>eNptkt1rFDEUxQdRsFaffQ34Yh9mm2TysfexFD8GWgRHn0Oa3OzOsjMZk2yx_71pV9QFCSGXy-8cTpLbNG8ZXUkG4nIz-ZbxljPZcsrgWXPGAFgLinbP_6lfNq9y3lGqQCt91mA_LXuccC62jHEmdvZkwRRimuzskMRArLdLGe-RTJi3JGEY5ycBGWdStkj6ig1bxEKGh1xwIrfR456874fhltyLFRMXr5sXwe4zvvl9njffP374dv25vfnyqb--ummd0Lq0nguPAOs7kM56Z-84rBWAqkkVMGedkh3tuA7OiqCdDNQp4SmrGtBM2O686Y--PtqdWdI42fRgoh3NUyOmjbGpjG6PJkgt2VprDFYICho4SBCce6E6jY5Xr3dHryXFHwfMxeziIc01vuFMKSUBxPovtbHVdJxDLMm6aczOXEkFUui6K7X6D1WXx2l0ca5vWvsngosTQWUK_iwbe8jZ9MPXU_byyLoUc67_8-fijJrH0TB1NAzjNbY0j6PR_QKjzKeJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166659948</pqid></control><display><type>article</type><title>Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)</title><source>Publicly Available Content (ProQuest)</source><creator>dos Santos, Thiago Dias ; Morlighem, Mathieu ; Seroussi, Helene ; Devloo, Philippe Remy Bernard ; Simoes, Jefferson Cardia</creator><creatorcontrib>dos Santos, Thiago Dias ; Morlighem, Mathieu ; Seroussi, Helene ; Devloo, Philippe Remy Bernard ; Simoes, Jefferson Cardia</creatorcontrib><description>Accurate projections of the evolution of ice sheets in a changing climate require a fine mesh/grid resolution in ice sheet models to correctly capture fundamental physical processes, such as the evolution of the grounding line, the region where grounded ice starts to float. The evolution of the grounding line indeed plays a major role in ice sheet dynamics, as it is a fundamental control on marine ice sheet stability. Numerical modeling of a grounding line requires significant computational resources since the accuracy of its position depends on grid or mesh resolution. A technique that improves accuracy with reduced computational cost is the adaptive mesh refinement (AMR) approach. We present here the implementation of the AMR technique in the finite element Ice Sheet System Model (ISSM) to simulate grounding line dynamics under two different benchmarks: MISMIP3d and MISMIP+. We test different refinement criteria: (a) distance around the grounding line, (b) a posteriori error estimator, the Zienkiewicz–Zhu (ZZ) error estimator, and (c) different combinations of (a) and (b). In both benchmarks, the ZZ error estimator presents high values around the grounding line. In the MISMIP+ setup, this estimator also presents high values in the grounded part of the ice sheet, following the complex shape of the bedrock geometry. The ZZ estimator helps guide the refinement procedure such that AMR performance is improved. Our results show that computational time with AMR depends on the required accuracy, but in all cases, it is significantly shorter than for uniformly refined meshes. We conclude that AMR without an associated error estimator should be avoided, especially for real glaciers that have a complex bed geometry.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-12-215-2019</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Accuracy ; Adaptive systems ; Analysis ; Arctic research ; Bedrock ; Benchmarks ; Climate change ; Climate models ; Computational efficiency ; Computer applications ; Computer simulation ; Computing time ; Control stability ; Dynamics ; Errors ; Evolution ; Finite element method ; Glaciation ; Glaciers ; Grid refinement (mathematics) ; Ice ; Ice sheet dynamics ; Ice sheet models ; Ice sheets ; Mathematical models ; Modelling ; Nonlinear programming ; Resolution</subject><ispartof>Geoscientific Model Development, 2019-01, Vol.12 (1), p.215-232</ispartof><rights>COPYRIGHT 2019 Copernicus GmbH</rights><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3</citedby><cites>FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3</cites><orcidid>0000-0001-9201-1644 ; 0000-0001-5219-1310 ; 0000-0001-8257-1314 ; 0000-0001-5555-3401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2166659948/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2166659948?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>dos Santos, Thiago Dias</creatorcontrib><creatorcontrib>Morlighem, Mathieu</creatorcontrib><creatorcontrib>Seroussi, Helene</creatorcontrib><creatorcontrib>Devloo, Philippe Remy Bernard</creatorcontrib><creatorcontrib>Simoes, Jefferson Cardia</creatorcontrib><title>Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)</title><title>Geoscientific Model Development</title><description>Accurate projections of the evolution of ice sheets in a changing climate require a fine mesh/grid resolution in ice sheet models to correctly capture fundamental physical processes, such as the evolution of the grounding line, the region where grounded ice starts to float. The evolution of the grounding line indeed plays a major role in ice sheet dynamics, as it is a fundamental control on marine ice sheet stability. Numerical modeling of a grounding line requires significant computational resources since the accuracy of its position depends on grid or mesh resolution. A technique that improves accuracy with reduced computational cost is the adaptive mesh refinement (AMR) approach. We present here the implementation of the AMR technique in the finite element Ice Sheet System Model (ISSM) to simulate grounding line dynamics under two different benchmarks: MISMIP3d and MISMIP+. We test different refinement criteria: (a) distance around the grounding line, (b) a posteriori error estimator, the Zienkiewicz–Zhu (ZZ) error estimator, and (c) different combinations of (a) and (b). In both benchmarks, the ZZ error estimator presents high values around the grounding line. In the MISMIP+ setup, this estimator also presents high values in the grounded part of the ice sheet, following the complex shape of the bedrock geometry. The ZZ estimator helps guide the refinement procedure such that AMR performance is improved. Our results show that computational time with AMR depends on the required accuracy, but in all cases, it is significantly shorter than for uniformly refined meshes. We conclude that AMR without an associated error estimator should be avoided, especially for real glaciers that have a complex bed geometry.</description><subject>Accuracy</subject><subject>Adaptive systems</subject><subject>Analysis</subject><subject>Arctic research</subject><subject>Bedrock</subject><subject>Benchmarks</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Computational efficiency</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Control stability</subject><subject>Dynamics</subject><subject>Errors</subject><subject>Evolution</subject><subject>Finite element method</subject><subject>Glaciation</subject><subject>Glaciers</subject><subject>Grid refinement (mathematics)</subject><subject>Ice</subject><subject>Ice sheet dynamics</subject><subject>Ice sheet models</subject><subject>Ice sheets</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nonlinear programming</subject><subject>Resolution</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt1rFDEUxQdRsFaffQ34Yh9mm2TysfexFD8GWgRHn0Oa3OzOsjMZk2yx_71pV9QFCSGXy-8cTpLbNG8ZXUkG4nIz-ZbxljPZcsrgWXPGAFgLinbP_6lfNq9y3lGqQCt91mA_LXuccC62jHEmdvZkwRRimuzskMRArLdLGe-RTJi3JGEY5ycBGWdStkj6ig1bxEKGh1xwIrfR456874fhltyLFRMXr5sXwe4zvvl9njffP374dv25vfnyqb--ummd0Lq0nguPAOs7kM56Z-84rBWAqkkVMGedkh3tuA7OiqCdDNQp4SmrGtBM2O686Y--PtqdWdI42fRgoh3NUyOmjbGpjG6PJkgt2VprDFYICho4SBCce6E6jY5Xr3dHryXFHwfMxeziIc01vuFMKSUBxPovtbHVdJxDLMm6aczOXEkFUui6K7X6D1WXx2l0ca5vWvsngosTQWUK_iwbe8jZ9MPXU_byyLoUc67_8-fijJrH0TB1NAzjNbY0j6PR_QKjzKeJ</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>dos Santos, Thiago Dias</creator><creator>Morlighem, Mathieu</creator><creator>Seroussi, Helene</creator><creator>Devloo, Philippe Remy Bernard</creator><creator>Simoes, Jefferson Cardia</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9201-1644</orcidid><orcidid>https://orcid.org/0000-0001-5219-1310</orcidid><orcidid>https://orcid.org/0000-0001-8257-1314</orcidid><orcidid>https://orcid.org/0000-0001-5555-3401</orcidid></search><sort><creationdate>20190114</creationdate><title>Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)</title><author>dos Santos, Thiago Dias ; Morlighem, Mathieu ; Seroussi, Helene ; Devloo, Philippe Remy Bernard ; Simoes, Jefferson Cardia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Adaptive systems</topic><topic>Analysis</topic><topic>Arctic research</topic><topic>Bedrock</topic><topic>Benchmarks</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Computational efficiency</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Control stability</topic><topic>Dynamics</topic><topic>Errors</topic><topic>Evolution</topic><topic>Finite element method</topic><topic>Glaciation</topic><topic>Glaciers</topic><topic>Grid refinement (mathematics)</topic><topic>Ice</topic><topic>Ice sheet dynamics</topic><topic>Ice sheet models</topic><topic>Ice sheets</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nonlinear programming</topic><topic>Resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, Thiago Dias</creatorcontrib><creatorcontrib>Morlighem, Mathieu</creatorcontrib><creatorcontrib>Seroussi, Helene</creatorcontrib><creatorcontrib>Devloo, Philippe Remy Bernard</creatorcontrib><creatorcontrib>Simoes, Jefferson Cardia</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, Thiago Dias</au><au>Morlighem, Mathieu</au><au>Seroussi, Helene</au><au>Devloo, Philippe Remy Bernard</au><au>Simoes, Jefferson Cardia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)</atitle><jtitle>Geoscientific Model Development</jtitle><date>2019-01-14</date><risdate>2019</risdate><volume>12</volume><issue>1</issue><spage>215</spage><epage>232</epage><pages>215-232</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>Accurate projections of the evolution of ice sheets in a changing climate require a fine mesh/grid resolution in ice sheet models to correctly capture fundamental physical processes, such as the evolution of the grounding line, the region where grounded ice starts to float. The evolution of the grounding line indeed plays a major role in ice sheet dynamics, as it is a fundamental control on marine ice sheet stability. Numerical modeling of a grounding line requires significant computational resources since the accuracy of its position depends on grid or mesh resolution. A technique that improves accuracy with reduced computational cost is the adaptive mesh refinement (AMR) approach. We present here the implementation of the AMR technique in the finite element Ice Sheet System Model (ISSM) to simulate grounding line dynamics under two different benchmarks: MISMIP3d and MISMIP+. We test different refinement criteria: (a) distance around the grounding line, (b) a posteriori error estimator, the Zienkiewicz–Zhu (ZZ) error estimator, and (c) different combinations of (a) and (b). In both benchmarks, the ZZ error estimator presents high values around the grounding line. In the MISMIP+ setup, this estimator also presents high values in the grounded part of the ice sheet, following the complex shape of the bedrock geometry. The ZZ estimator helps guide the refinement procedure such that AMR performance is improved. Our results show that computational time with AMR depends on the required accuracy, but in all cases, it is significantly shorter than for uniformly refined meshes. We conclude that AMR without an associated error estimator should be avoided, especially for real glaciers that have a complex bed geometry.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-12-215-2019</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9201-1644</orcidid><orcidid>https://orcid.org/0000-0001-5219-1310</orcidid><orcidid>https://orcid.org/0000-0001-8257-1314</orcidid><orcidid>https://orcid.org/0000-0001-5555-3401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1991-9603
ispartof Geoscientific Model Development, 2019-01, Vol.12 (1), p.215-232
issn 1991-9603
1991-959X
1991-962X
1991-9603
1991-962X
language eng
recordid cdi_proquest_journals_2166659948
source Publicly Available Content (ProQuest)
subjects Accuracy
Adaptive systems
Analysis
Arctic research
Bedrock
Benchmarks
Climate change
Climate models
Computational efficiency
Computer applications
Computer simulation
Computing time
Control stability
Dynamics
Errors
Evolution
Finite element method
Glaciation
Glaciers
Grid refinement (mathematics)
Ice
Ice sheet dynamics
Ice sheet models
Ice sheets
Mathematical models
Modelling
Nonlinear programming
Resolution
title Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20and%20performance%20of%20adaptive%20mesh%20refinement%20in%20the%20Ice%20Sheet%20System%20Model%20(ISSM%20v4.14)&rft.jtitle=Geoscientific%20Model%20Development&rft.au=dos%20Santos,%20Thiago%20Dias&rft.date=2019-01-14&rft.volume=12&rft.issue=1&rft.spage=215&rft.epage=232&rft.pages=215-232&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-12-215-2019&rft_dat=%3Cgale_doaj_%3EA569547954%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-d24de998b95cadcab2986996767691cac6530327fca4f7c5f0c64d01e999714a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2166659948&rft_id=info:pmid/&rft_galeid=A569547954&rfr_iscdi=true