Loading…

The Effect of General Relativistic Precession on Tidal Disruption Events from Eccentric Nuclear Disks

An eccentric nuclear disk consists of stars moving on apsidally-aligned orbits around a central black hole. The secular gravitational torques that dynamically stabilize these disks can also produce tidal disruption events (TDEs) at very high rates in Newtonian gravity. General relativity, however, i...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-01
Main Authors: Wernke, Heather N, Madigan, Ann-Marie
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wernke, Heather N
Madigan, Ann-Marie
description An eccentric nuclear disk consists of stars moving on apsidally-aligned orbits around a central black hole. The secular gravitational torques that dynamically stabilize these disks can also produce tidal disruption events (TDEs) at very high rates in Newtonian gravity. General relativity, however, is known to quench secular torques via rapid apsidal precession. Here we show that for a disk to black hole mass ratio \(\gtrsim 10^{-3}\), the system is in the full loss cone regime. The magnitude of the torque per orbital period acting on a stellar orbit means that general relativistic precession does not have a major effect on the dynamics. Thus we find that TDE rates from eccentric nuclear disks are not affected by general relativistic precession. Furthermore, we show that orbital elements between successive TDEs from eccentric nuclear disks are correlated, potentially resulting in unique observational signatures.
doi_str_mv 10.48550/arxiv.1901.03339
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2166880466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2166880466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-52a82e736fb49de8e46f631ce5a6aff973be45a2eedec32f3829b59d3df879343</originalsourceid><addsrcrecordid>eNotTd1KwzAYDYLgmHsA7wJet6b5kjS5lFmnMFSk9yNNv2BmbWfSFh_fDoUDh3M4P4TcFCwXWkp2Z-NPmPPCsCJnAGAuyIoDFJkWnF-RTUpHxhhXJZcSVgTrD6SV9-hGOni6wx6j7eg7dnYMc0hjcPQtosOUwtDTBXVol8BDSHE6jWevmrEfE_Vx-KKVc4uIS-llch3aeA5-pmty6W2XcPPPa1I_VvX2Kdu_7p639_vMSq4yya3mWILyjTAtahTKKygcSqus96aEBoW0HLFFB9yD5qaRpoXW69KAgDW5_Zs9xeF7wjQejsMU--XxwAultGZCKfgF861YpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166880466</pqid></control><display><type>article</type><title>The Effect of General Relativistic Precession on Tidal Disruption Events from Eccentric Nuclear Disks</title><source>Publicly Available Content Database</source><creator>Wernke, Heather N ; Madigan, Ann-Marie</creator><creatorcontrib>Wernke, Heather N ; Madigan, Ann-Marie</creatorcontrib><description>An eccentric nuclear disk consists of stars moving on apsidally-aligned orbits around a central black hole. The secular gravitational torques that dynamically stabilize these disks can also produce tidal disruption events (TDEs) at very high rates in Newtonian gravity. General relativity, however, is known to quench secular torques via rapid apsidal precession. Here we show that for a disk to black hole mass ratio \(\gtrsim 10^{-3}\), the system is in the full loss cone regime. The magnitude of the torque per orbital period acting on a stellar orbit means that general relativistic precession does not have a major effect on the dynamics. Thus we find that TDE rates from eccentric nuclear disks are not affected by general relativistic precession. Furthermore, we show that orbital elements between successive TDEs from eccentric nuclear disks are correlated, potentially resulting in unique observational signatures.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1901.03339</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Black holes ; Disruption ; Eccentric orbits ; Orbital elements ; Precession ; Relativism ; Relativistic effects ; Relativity ; Torque</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2166880466?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Wernke, Heather N</creatorcontrib><creatorcontrib>Madigan, Ann-Marie</creatorcontrib><title>The Effect of General Relativistic Precession on Tidal Disruption Events from Eccentric Nuclear Disks</title><title>arXiv.org</title><description>An eccentric nuclear disk consists of stars moving on apsidally-aligned orbits around a central black hole. The secular gravitational torques that dynamically stabilize these disks can also produce tidal disruption events (TDEs) at very high rates in Newtonian gravity. General relativity, however, is known to quench secular torques via rapid apsidal precession. Here we show that for a disk to black hole mass ratio \(\gtrsim 10^{-3}\), the system is in the full loss cone regime. The magnitude of the torque per orbital period acting on a stellar orbit means that general relativistic precession does not have a major effect on the dynamics. Thus we find that TDE rates from eccentric nuclear disks are not affected by general relativistic precession. Furthermore, we show that orbital elements between successive TDEs from eccentric nuclear disks are correlated, potentially resulting in unique observational signatures.</description><subject>Black holes</subject><subject>Disruption</subject><subject>Eccentric orbits</subject><subject>Orbital elements</subject><subject>Precession</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativity</subject><subject>Torque</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotTd1KwzAYDYLgmHsA7wJet6b5kjS5lFmnMFSk9yNNv2BmbWfSFh_fDoUDh3M4P4TcFCwXWkp2Z-NPmPPCsCJnAGAuyIoDFJkWnF-RTUpHxhhXJZcSVgTrD6SV9-hGOni6wx6j7eg7dnYMc0hjcPQtosOUwtDTBXVol8BDSHE6jWevmrEfE_Vx-KKVc4uIS-llch3aeA5-pmty6W2XcPPPa1I_VvX2Kdu_7p639_vMSq4yya3mWILyjTAtahTKKygcSqus96aEBoW0HLFFB9yD5qaRpoXW69KAgDW5_Zs9xeF7wjQejsMU--XxwAultGZCKfgF861YpA</recordid><startdate>20190110</startdate><enddate>20190110</enddate><creator>Wernke, Heather N</creator><creator>Madigan, Ann-Marie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190110</creationdate><title>The Effect of General Relativistic Precession on Tidal Disruption Events from Eccentric Nuclear Disks</title><author>Wernke, Heather N ; Madigan, Ann-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-52a82e736fb49de8e46f631ce5a6aff973be45a2eedec32f3829b59d3df879343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Black holes</topic><topic>Disruption</topic><topic>Eccentric orbits</topic><topic>Orbital elements</topic><topic>Precession</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativity</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Wernke, Heather N</creatorcontrib><creatorcontrib>Madigan, Ann-Marie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wernke, Heather N</au><au>Madigan, Ann-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of General Relativistic Precession on Tidal Disruption Events from Eccentric Nuclear Disks</atitle><jtitle>arXiv.org</jtitle><date>2019-01-10</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>An eccentric nuclear disk consists of stars moving on apsidally-aligned orbits around a central black hole. The secular gravitational torques that dynamically stabilize these disks can also produce tidal disruption events (TDEs) at very high rates in Newtonian gravity. General relativity, however, is known to quench secular torques via rapid apsidal precession. Here we show that for a disk to black hole mass ratio \(\gtrsim 10^{-3}\), the system is in the full loss cone regime. The magnitude of the torque per orbital period acting on a stellar orbit means that general relativistic precession does not have a major effect on the dynamics. Thus we find that TDE rates from eccentric nuclear disks are not affected by general relativistic precession. Furthermore, we show that orbital elements between successive TDEs from eccentric nuclear disks are correlated, potentially resulting in unique observational signatures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1901.03339</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2166880466
source Publicly Available Content Database
subjects Black holes
Disruption
Eccentric orbits
Orbital elements
Precession
Relativism
Relativistic effects
Relativity
Torque
title The Effect of General Relativistic Precession on Tidal Disruption Events from Eccentric Nuclear Disks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20General%20Relativistic%20Precession%20on%20Tidal%20Disruption%20Events%20from%20Eccentric%20Nuclear%20Disks&rft.jtitle=arXiv.org&rft.au=Wernke,%20Heather%20N&rft.date=2019-01-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1901.03339&rft_dat=%3Cproquest%3E2166880466%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-52a82e736fb49de8e46f631ce5a6aff973be45a2eedec32f3829b59d3df879343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2166880466&rft_id=info:pmid/&rfr_iscdi=true