Loading…
Rotating structures and Bryan’s effect
In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes, an interesting commonality was found in connection with the...
Saved in:
Published in: | American journal of physics 2009-06, Vol.77 (6), p.520-525 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3 |
container_end_page | 525 |
container_issue | 6 |
container_start_page | 520 |
container_title | American journal of physics |
container_volume | 77 |
creator | Joubert, Stephan V. Shatalov, Michael Y. Fay, Temple H. |
description | In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes, an interesting commonality was found in connection with the gyroscopic effects of the rotating object. The effect has also been discussed in connection with a rotating fluid-filled wineglass. A linear theory is developed, assuming that the rotation rate is constant and much smaller than the lowest eigenfrequency of the vibrating system. The associated physics and mathematics are easy enough for undergraduate students to understand. |
doi_str_mv | 10.1119/1.3088877 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_216703485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1713051171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoWEcXvkFxpULHk6ZJk4ULZ_AGA4LoOqS5SAdtxyQVZudr-Ho-iR06MgsZV4cD338uH0LHGMYYY3GBxwQ452W5gxIsCpLlAsQuSgAgzwQFuo8OQpj3rcAcEnT62EYV6-YlDdF3OnbehlQ1Jp34pWq-P79Cap2zOh6iPadegz1a1xF6vrl-mt5ls4fb--nVLNOEQ8wqIqqcCVdhVjLHlBJKVZpVZVEIcNiYvMJKMCcMUEspocwaS7nlJi9VqRUZoZNh7sK3750NUc7bzjf9Spn3M4EUnPbQ2QBp34bgrZMLX78pv5QY5MqDxHLtoWcvBzboevVq22yHf2XIjYw-f74t_9H6TVYujPsP_nvZD9sXgWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216703485</pqid></control><display><type>article</type><title>Rotating structures and Bryan’s effect</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Joubert, Stephan V. ; Shatalov, Michael Y. ; Fay, Temple H.</creator><creatorcontrib>Joubert, Stephan V. ; Shatalov, Michael Y. ; Fay, Temple H.</creatorcontrib><description>In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes, an interesting commonality was found in connection with the gyroscopic effects of the rotating object. The effect has also been discussed in connection with a rotating fluid-filled wineglass. A linear theory is developed, assuming that the rotation rate is constant and much smaller than the lowest eigenfrequency of the vibrating system. The associated physics and mathematics are easy enough for undergraduate students to understand.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.3088877</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Association of Physics Teachers</publisher><subject>College students ; Mathematics ; Vibration</subject><ispartof>American journal of physics, 2009-06, Vol.77 (6), p.520-525</ispartof><rights>American Association of Physics Teachers</rights><rights>2009 American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Jun 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3</citedby><cites>FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Joubert, Stephan V.</creatorcontrib><creatorcontrib>Shatalov, Michael Y.</creatorcontrib><creatorcontrib>Fay, Temple H.</creatorcontrib><title>Rotating structures and Bryan’s effect</title><title>American journal of physics</title><description>In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes, an interesting commonality was found in connection with the gyroscopic effects of the rotating object. The effect has also been discussed in connection with a rotating fluid-filled wineglass. A linear theory is developed, assuming that the rotation rate is constant and much smaller than the lowest eigenfrequency of the vibrating system. The associated physics and mathematics are easy enough for undergraduate students to understand.</description><subject>College students</subject><subject>Mathematics</subject><subject>Vibration</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoWEcXvkFxpULHk6ZJk4ULZ_AGA4LoOqS5SAdtxyQVZudr-Ho-iR06MgsZV4cD338uH0LHGMYYY3GBxwQ452W5gxIsCpLlAsQuSgAgzwQFuo8OQpj3rcAcEnT62EYV6-YlDdF3OnbehlQ1Jp34pWq-P79Cap2zOh6iPadegz1a1xF6vrl-mt5ls4fb--nVLNOEQ8wqIqqcCVdhVjLHlBJKVZpVZVEIcNiYvMJKMCcMUEspocwaS7nlJi9VqRUZoZNh7sK3750NUc7bzjf9Spn3M4EUnPbQ2QBp34bgrZMLX78pv5QY5MqDxHLtoWcvBzboevVq22yHf2XIjYw-f74t_9H6TVYujPsP_nvZD9sXgWo</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Joubert, Stephan V.</creator><creator>Shatalov, Michael Y.</creator><creator>Fay, Temple H.</creator><general>American Association of Physics Teachers</general><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090601</creationdate><title>Rotating structures and Bryan’s effect</title><author>Joubert, Stephan V. ; Shatalov, Michael Y. ; Fay, Temple H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>College students</topic><topic>Mathematics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joubert, Stephan V.</creatorcontrib><creatorcontrib>Shatalov, Michael Y.</creatorcontrib><creatorcontrib>Fay, Temple H.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joubert, Stephan V.</au><au>Shatalov, Michael Y.</au><au>Fay, Temple H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotating structures and Bryan’s effect</atitle><jtitle>American journal of physics</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>77</volume><issue>6</issue><spage>520</spage><epage>525</epage><pages>520-525</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes, an interesting commonality was found in connection with the gyroscopic effects of the rotating object. The effect has also been discussed in connection with a rotating fluid-filled wineglass. A linear theory is developed, assuming that the rotation rate is constant and much smaller than the lowest eigenfrequency of the vibrating system. The associated physics and mathematics are easy enough for undergraduate students to understand.</abstract><cop>Woodbury</cop><pub>American Association of Physics Teachers</pub><doi>10.1119/1.3088877</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9505 |
ispartof | American journal of physics, 2009-06, Vol.77 (6), p.520-525 |
issn | 0002-9505 1943-2909 |
language | eng |
recordid | cdi_proquest_journals_216703485 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | College students Mathematics Vibration |
title | Rotating structures and Bryan’s effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotating%20structures%20and%20Bryan%E2%80%99s%20effect&rft.jtitle=American%20journal%20of%20physics&rft.au=Joubert,%20Stephan%20V.&rft.date=2009-06-01&rft.volume=77&rft.issue=6&rft.spage=520&rft.epage=525&rft.pages=520-525&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.3088877&rft_dat=%3Cproquest_scita%3E1713051171%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216703485&rft_id=info:pmid/&rfr_iscdi=true |