Loading…

Rotating structures and Bryan’s effect

In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes, an interesting commonality was found in connection with the...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physics 2009-06, Vol.77 (6), p.520-525
Main Authors: Joubert, Stephan V., Shatalov, Michael Y., Fay, Temple H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3
cites cdi_FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3
container_end_page 525
container_issue 6
container_start_page 520
container_title American journal of physics
container_volume 77
creator Joubert, Stephan V.
Shatalov, Michael Y.
Fay, Temple H.
description In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes, an interesting commonality was found in connection with the gyroscopic effects of the rotating object. The effect has also been discussed in connection with a rotating fluid-filled wineglass. A linear theory is developed, assuming that the rotation rate is constant and much smaller than the lowest eigenfrequency of the vibrating system. The associated physics and mathematics are easy enough for undergraduate students to understand.
doi_str_mv 10.1119/1.3088877
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_216703485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1713051171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoWEcXvkFxpULHk6ZJk4ULZ_AGA4LoOqS5SAdtxyQVZudr-Ho-iR06MgsZV4cD338uH0LHGMYYY3GBxwQ452W5gxIsCpLlAsQuSgAgzwQFuo8OQpj3rcAcEnT62EYV6-YlDdF3OnbehlQ1Jp34pWq-P79Cap2zOh6iPadegz1a1xF6vrl-mt5ls4fb--nVLNOEQ8wqIqqcCVdhVjLHlBJKVZpVZVEIcNiYvMJKMCcMUEspocwaS7nlJi9VqRUZoZNh7sK3750NUc7bzjf9Spn3M4EUnPbQ2QBp34bgrZMLX78pv5QY5MqDxHLtoWcvBzboevVq22yHf2XIjYw-f74t_9H6TVYujPsP_nvZD9sXgWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216703485</pqid></control><display><type>article</type><title>Rotating structures and Bryan’s effect</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Joubert, Stephan V. ; Shatalov, Michael Y. ; Fay, Temple H.</creator><creatorcontrib>Joubert, Stephan V. ; Shatalov, Michael Y. ; Fay, Temple H.</creatorcontrib><description>In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes, an interesting commonality was found in connection with the gyroscopic effects of the rotating object. The effect has also been discussed in connection with a rotating fluid-filled wineglass. A linear theory is developed, assuming that the rotation rate is constant and much smaller than the lowest eigenfrequency of the vibrating system. The associated physics and mathematics are easy enough for undergraduate students to understand.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.3088877</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Association of Physics Teachers</publisher><subject>College students ; Mathematics ; Vibration</subject><ispartof>American journal of physics, 2009-06, Vol.77 (6), p.520-525</ispartof><rights>American Association of Physics Teachers</rights><rights>2009 American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Jun 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3</citedby><cites>FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Joubert, Stephan V.</creatorcontrib><creatorcontrib>Shatalov, Michael Y.</creatorcontrib><creatorcontrib>Fay, Temple H.</creatorcontrib><title>Rotating structures and Bryan’s effect</title><title>American journal of physics</title><description>In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes, an interesting commonality was found in connection with the gyroscopic effects of the rotating object. The effect has also been discussed in connection with a rotating fluid-filled wineglass. A linear theory is developed, assuming that the rotation rate is constant and much smaller than the lowest eigenfrequency of the vibrating system. The associated physics and mathematics are easy enough for undergraduate students to understand.</description><subject>College students</subject><subject>Mathematics</subject><subject>Vibration</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoWEcXvkFxpULHk6ZJk4ULZ_AGA4LoOqS5SAdtxyQVZudr-Ho-iR06MgsZV4cD338uH0LHGMYYY3GBxwQ452W5gxIsCpLlAsQuSgAgzwQFuo8OQpj3rcAcEnT62EYV6-YlDdF3OnbehlQ1Jp34pWq-P79Cap2zOh6iPadegz1a1xF6vrl-mt5ls4fb--nVLNOEQ8wqIqqcCVdhVjLHlBJKVZpVZVEIcNiYvMJKMCcMUEspocwaS7nlJi9VqRUZoZNh7sK3750NUc7bzjf9Spn3M4EUnPbQ2QBp34bgrZMLX78pv5QY5MqDxHLtoWcvBzboevVq22yHf2XIjYw-f74t_9H6TVYujPsP_nvZD9sXgWo</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Joubert, Stephan V.</creator><creator>Shatalov, Michael Y.</creator><creator>Fay, Temple H.</creator><general>American Association of Physics Teachers</general><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090601</creationdate><title>Rotating structures and Bryan’s effect</title><author>Joubert, Stephan V. ; Shatalov, Michael Y. ; Fay, Temple H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>College students</topic><topic>Mathematics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joubert, Stephan V.</creatorcontrib><creatorcontrib>Shatalov, Michael Y.</creatorcontrib><creatorcontrib>Fay, Temple H.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joubert, Stephan V.</au><au>Shatalov, Michael Y.</au><au>Fay, Temple H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotating structures and Bryan’s effect</atitle><jtitle>American journal of physics</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>77</volume><issue>6</issue><spage>520</spage><epage>525</epage><pages>520-525</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes, an interesting commonality was found in connection with the gyroscopic effects of the rotating object. The effect has also been discussed in connection with a rotating fluid-filled wineglass. A linear theory is developed, assuming that the rotation rate is constant and much smaller than the lowest eigenfrequency of the vibrating system. The associated physics and mathematics are easy enough for undergraduate students to understand.</abstract><cop>Woodbury</cop><pub>American Association of Physics Teachers</pub><doi>10.1119/1.3088877</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 2009-06, Vol.77 (6), p.520-525
issn 0002-9505
1943-2909
language eng
recordid cdi_proquest_journals_216703485
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects College students
Mathematics
Vibration
title Rotating structures and Bryan’s effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotating%20structures%20and%20Bryan%E2%80%99s%20effect&rft.jtitle=American%20journal%20of%20physics&rft.au=Joubert,%20Stephan%20V.&rft.date=2009-06-01&rft.volume=77&rft.issue=6&rft.spage=520&rft.epage=525&rft.pages=520-525&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.3088877&rft_dat=%3Cproquest_scita%3E1713051171%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-b39b269fb1676f6aa9aabc6b74490f1dd2b1a96f9d05e55356ede58e8d27a7ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216703485&rft_id=info:pmid/&rfr_iscdi=true