Loading…
Paradoxical pop-ups: Why are they difficult to catch?
Professional baseball players occasionally find it difficult to gracefully approach seemingly routine pop-ups. We describe a set of towering pop-ups with trajectories that exhibit cusps and loops near the apex. For a normal fly ball the horizontal velocity continuously decreases due to drag caused b...
Saved in:
Published in: | American journal of physics 2008-08, Vol.76 (8), p.723-729 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Professional baseball players occasionally find it difficult to gracefully approach seemingly routine pop-ups. We describe a set of towering pop-ups with trajectories that exhibit cusps and loops near the apex. For a normal fly ball the horizontal velocity continuously decreases due to drag caused by air resistance. For pop-ups the Magnus force is larger than the drag force. In these cases the horizontal velocity initially decreases like a normal fly ball, but after the apex, the Magnus force accelerates the horizontal motion. We refer to this class of pop-ups as paradoxical because they appear to misinform the typically robust optical control strategies used by fielders and lead to systematic vacillation in running paths, especially when a trajectory terminates near the fielder. Former major league infielders confirm that our model agrees with their experiences. |
---|---|
ISSN: | 0002-9505 1943-2909 |
DOI: | 10.1119/1.2937899 |