Loading…

Porous purple glass – a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework

We report the first microporous cobalt imidazolate glass obtained from a meltable cobalt-based zeolitic imidazolate framework, ZIF-62(Co). Crystalline ZIF-62(Co) is constructed from Co 2+ cations and two different imidazolate-type linkers, namely conventional imidazolate and benzimidazolate. The mic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (3), p.985-990
Main Authors: Frentzel-Beyme, Louis, Kloß, Marvin, Pallach, Roman, Salamon, Soma, Moldenhauer, Henning, Landers, Joachim, Wende, Heiko, Debus, Jörg, Henke, Sebastian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c296t-50018656078571d5c4a4d36c5e2fe1c374f829b8167600334e90361b0180d43a3
cites cdi_FETCH-LOGICAL-c296t-50018656078571d5c4a4d36c5e2fe1c374f829b8167600334e90361b0180d43a3
container_end_page 990
container_issue 3
container_start_page 985
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Frentzel-Beyme, Louis
Kloß, Marvin
Pallach, Roman
Salamon, Soma
Moldenhauer, Henning
Landers, Joachim
Wende, Heiko
Debus, Jörg
Henke, Sebastian
description We report the first microporous cobalt imidazolate glass obtained from a meltable cobalt-based zeolitic imidazolate framework, ZIF-62(Co). Crystalline ZIF-62(Co) is constructed from Co 2+ cations and two different imidazolate-type linkers, namely conventional imidazolate and benzimidazolate. The microporous framework melts at ∼430 °C and converts into a glass upon cooling to room temperature. X-Ray total scattering and Raman spectroscopy reveal that the local structure of the glass and the crystalline parent material are very similar. Magnetic measurements and X-ray diffraction uncover that ZIF-62(Co) partially decomposes upon melting and glass formation resulting in the reduction of ∼3% of the Co 2+ ions to metallic cobalt. Most importantly, the ZIF glass retains almost 50% of the porosity of crystalline ZIF-62(Co). Our results pave the way for the realisation of metal–organic framework glasses containing open shell metal ions, as well as the application of these porous glasses in gas separation, energy storage and catalysis.
doi_str_mv 10.1039/C8TA08016J
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2167170302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167170302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-50018656078571d5c4a4d36c5e2fe1c374f829b8167600334e90361b0180d43a3</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0EElXphhNYYocUGMeJf5ZVBRRUCRZlHTmOAykJDrajUlbcgRtyElyVnw2zmZHe-95oBqFjAmcEqDyfieUUBBB2s4dGKeSQ8Eyy_d9ZiEM08X4FsQQAk3KEXu-ss4PH_eD61uCHVnmPP98_sMLalqoNuOmaSr3ZVoUfed2ER6y0Nt43ZYT6GOGbsMG1s10EO9MGtRX-Said6szauqcjdFCr1pvJdx-j-8uL5WyeLG6vrmfTRaJTyUKSAxDBcgZc5JxUuc5UVlGmc5PWhmjKs1qkshSEcQZAaWYkUEbKSEGVUUXH6GSX2zv7MhgfipUd3HNcWaQRIhwopNF1unPpeIp3pi5613TKbQoCxfa5xd9z6RfvCGzS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167170302</pqid></control><display><type>article</type><title>Porous purple glass – a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework</title><source>Royal Society of Chemistry</source><creator>Frentzel-Beyme, Louis ; Kloß, Marvin ; Pallach, Roman ; Salamon, Soma ; Moldenhauer, Henning ; Landers, Joachim ; Wende, Heiko ; Debus, Jörg ; Henke, Sebastian</creator><creatorcontrib>Frentzel-Beyme, Louis ; Kloß, Marvin ; Pallach, Roman ; Salamon, Soma ; Moldenhauer, Henning ; Landers, Joachim ; Wende, Heiko ; Debus, Jörg ; Henke, Sebastian</creatorcontrib><description>We report the first microporous cobalt imidazolate glass obtained from a meltable cobalt-based zeolitic imidazolate framework, ZIF-62(Co). Crystalline ZIF-62(Co) is constructed from Co 2+ cations and two different imidazolate-type linkers, namely conventional imidazolate and benzimidazolate. The microporous framework melts at ∼430 °C and converts into a glass upon cooling to room temperature. X-Ray total scattering and Raman spectroscopy reveal that the local structure of the glass and the crystalline parent material are very similar. Magnetic measurements and X-ray diffraction uncover that ZIF-62(Co) partially decomposes upon melting and glass formation resulting in the reduction of ∼3% of the Co 2+ ions to metallic cobalt. Most importantly, the ZIF glass retains almost 50% of the porosity of crystalline ZIF-62(Co). Our results pave the way for the realisation of metal–organic framework glasses containing open shell metal ions, as well as the application of these porous glasses in gas separation, energy storage and catalysis.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA08016J</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Calorimetry ; Carbon dioxide ; Catalysis ; Cations ; Cobalt ; Crystal structure ; Crystallinity ; Crystallography ; Data processing ; Differential scanning calorimetry ; Differential thermal analysis ; Differential thermogravimetric analysis ; Energy storage ; Gas separation ; Glass ; Infrared spectroscopy ; Magnetic measurement ; Magnetic resonance spectroscopy ; Magnetism ; Melts ; Metal ions ; Metal-organic frameworks ; Metals ; NMR spectroscopy ; Porosity ; Raman spectra ; Raman spectroscopy ; Single crystals ; Spectroscopy ; Spectrum analysis ; Thermogravimetric analysis ; X ray powder diffraction ; X-ray diffraction</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (3), p.985-990</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-50018656078571d5c4a4d36c5e2fe1c374f829b8167600334e90361b0180d43a3</citedby><cites>FETCH-LOGICAL-c296t-50018656078571d5c4a4d36c5e2fe1c374f829b8167600334e90361b0180d43a3</cites><orcidid>0000-0003-1502-6038 ; 0000-0002-4506-6383 ; 0000-0003-2255-6299 ; 0000-0002-8678-4402 ; 0000-0002-8661-6038 ; 0000-0001-8395-3541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Frentzel-Beyme, Louis</creatorcontrib><creatorcontrib>Kloß, Marvin</creatorcontrib><creatorcontrib>Pallach, Roman</creatorcontrib><creatorcontrib>Salamon, Soma</creatorcontrib><creatorcontrib>Moldenhauer, Henning</creatorcontrib><creatorcontrib>Landers, Joachim</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Debus, Jörg</creatorcontrib><creatorcontrib>Henke, Sebastian</creatorcontrib><title>Porous purple glass – a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>We report the first microporous cobalt imidazolate glass obtained from a meltable cobalt-based zeolitic imidazolate framework, ZIF-62(Co). Crystalline ZIF-62(Co) is constructed from Co 2+ cations and two different imidazolate-type linkers, namely conventional imidazolate and benzimidazolate. The microporous framework melts at ∼430 °C and converts into a glass upon cooling to room temperature. X-Ray total scattering and Raman spectroscopy reveal that the local structure of the glass and the crystalline parent material are very similar. Magnetic measurements and X-ray diffraction uncover that ZIF-62(Co) partially decomposes upon melting and glass formation resulting in the reduction of ∼3% of the Co 2+ ions to metallic cobalt. Most importantly, the ZIF glass retains almost 50% of the porosity of crystalline ZIF-62(Co). Our results pave the way for the realisation of metal–organic framework glasses containing open shell metal ions, as well as the application of these porous glasses in gas separation, energy storage and catalysis.</description><subject>Calorimetry</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Cations</subject><subject>Cobalt</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography</subject><subject>Data processing</subject><subject>Differential scanning calorimetry</subject><subject>Differential thermal analysis</subject><subject>Differential thermogravimetric analysis</subject><subject>Energy storage</subject><subject>Gas separation</subject><subject>Glass</subject><subject>Infrared spectroscopy</subject><subject>Magnetic measurement</subject><subject>Magnetic resonance spectroscopy</subject><subject>Magnetism</subject><subject>Melts</subject><subject>Metal ions</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>NMR spectroscopy</subject><subject>Porosity</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Single crystals</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thermogravimetric analysis</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQhS0EElXphhNYYocUGMeJf5ZVBRRUCRZlHTmOAykJDrajUlbcgRtyElyVnw2zmZHe-95oBqFjAmcEqDyfieUUBBB2s4dGKeSQ8Eyy_d9ZiEM08X4FsQQAk3KEXu-ss4PH_eD61uCHVnmPP98_sMLalqoNuOmaSr3ZVoUfed2ER6y0Nt43ZYT6GOGbsMG1s10EO9MGtRX-Said6szauqcjdFCr1pvJdx-j-8uL5WyeLG6vrmfTRaJTyUKSAxDBcgZc5JxUuc5UVlGmc5PWhmjKs1qkshSEcQZAaWYkUEbKSEGVUUXH6GSX2zv7MhgfipUd3HNcWaQRIhwopNF1unPpeIp3pi5613TKbQoCxfa5xd9z6RfvCGzS</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Frentzel-Beyme, Louis</creator><creator>Kloß, Marvin</creator><creator>Pallach, Roman</creator><creator>Salamon, Soma</creator><creator>Moldenhauer, Henning</creator><creator>Landers, Joachim</creator><creator>Wende, Heiko</creator><creator>Debus, Jörg</creator><creator>Henke, Sebastian</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1502-6038</orcidid><orcidid>https://orcid.org/0000-0002-4506-6383</orcidid><orcidid>https://orcid.org/0000-0003-2255-6299</orcidid><orcidid>https://orcid.org/0000-0002-8678-4402</orcidid><orcidid>https://orcid.org/0000-0002-8661-6038</orcidid><orcidid>https://orcid.org/0000-0001-8395-3541</orcidid></search><sort><creationdate>2019</creationdate><title>Porous purple glass – a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework</title><author>Frentzel-Beyme, Louis ; Kloß, Marvin ; Pallach, Roman ; Salamon, Soma ; Moldenhauer, Henning ; Landers, Joachim ; Wende, Heiko ; Debus, Jörg ; Henke, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-50018656078571d5c4a4d36c5e2fe1c374f829b8167600334e90361b0180d43a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calorimetry</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Cations</topic><topic>Cobalt</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography</topic><topic>Data processing</topic><topic>Differential scanning calorimetry</topic><topic>Differential thermal analysis</topic><topic>Differential thermogravimetric analysis</topic><topic>Energy storage</topic><topic>Gas separation</topic><topic>Glass</topic><topic>Infrared spectroscopy</topic><topic>Magnetic measurement</topic><topic>Magnetic resonance spectroscopy</topic><topic>Magnetism</topic><topic>Melts</topic><topic>Metal ions</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>NMR spectroscopy</topic><topic>Porosity</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Single crystals</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thermogravimetric analysis</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frentzel-Beyme, Louis</creatorcontrib><creatorcontrib>Kloß, Marvin</creatorcontrib><creatorcontrib>Pallach, Roman</creatorcontrib><creatorcontrib>Salamon, Soma</creatorcontrib><creatorcontrib>Moldenhauer, Henning</creatorcontrib><creatorcontrib>Landers, Joachim</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Debus, Jörg</creatorcontrib><creatorcontrib>Henke, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frentzel-Beyme, Louis</au><au>Kloß, Marvin</au><au>Pallach, Roman</au><au>Salamon, Soma</au><au>Moldenhauer, Henning</au><au>Landers, Joachim</au><au>Wende, Heiko</au><au>Debus, Jörg</au><au>Henke, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous purple glass – a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>3</issue><spage>985</spage><epage>990</epage><pages>985-990</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>We report the first microporous cobalt imidazolate glass obtained from a meltable cobalt-based zeolitic imidazolate framework, ZIF-62(Co). Crystalline ZIF-62(Co) is constructed from Co 2+ cations and two different imidazolate-type linkers, namely conventional imidazolate and benzimidazolate. The microporous framework melts at ∼430 °C and converts into a glass upon cooling to room temperature. X-Ray total scattering and Raman spectroscopy reveal that the local structure of the glass and the crystalline parent material are very similar. Magnetic measurements and X-ray diffraction uncover that ZIF-62(Co) partially decomposes upon melting and glass formation resulting in the reduction of ∼3% of the Co 2+ ions to metallic cobalt. Most importantly, the ZIF glass retains almost 50% of the porosity of crystalline ZIF-62(Co). Our results pave the way for the realisation of metal–organic framework glasses containing open shell metal ions, as well as the application of these porous glasses in gas separation, energy storage and catalysis.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA08016J</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1502-6038</orcidid><orcidid>https://orcid.org/0000-0002-4506-6383</orcidid><orcidid>https://orcid.org/0000-0003-2255-6299</orcidid><orcidid>https://orcid.org/0000-0002-8678-4402</orcidid><orcidid>https://orcid.org/0000-0002-8661-6038</orcidid><orcidid>https://orcid.org/0000-0001-8395-3541</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (3), p.985-990
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2167170302
source Royal Society of Chemistry
subjects Calorimetry
Carbon dioxide
Catalysis
Cations
Cobalt
Crystal structure
Crystallinity
Crystallography
Data processing
Differential scanning calorimetry
Differential thermal analysis
Differential thermogravimetric analysis
Energy storage
Gas separation
Glass
Infrared spectroscopy
Magnetic measurement
Magnetic resonance spectroscopy
Magnetism
Melts
Metal ions
Metal-organic frameworks
Metals
NMR spectroscopy
Porosity
Raman spectra
Raman spectroscopy
Single crystals
Spectroscopy
Spectrum analysis
Thermogravimetric analysis
X ray powder diffraction
X-ray diffraction
title Porous purple glass – a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20purple%20glass%20%E2%80%93%20a%20cobalt%20imidazolate%20glass%20with%20accessible%20porosity%20from%20a%20meltable%20cobalt%20imidazolate%20framework&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Frentzel-Beyme,%20Louis&rft.date=2019&rft.volume=7&rft.issue=3&rft.spage=985&rft.epage=990&rft.pages=985-990&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA08016J&rft_dat=%3Cproquest_cross%3E2167170302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-50018656078571d5c4a4d36c5e2fe1c374f829b8167600334e90361b0180d43a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2167170302&rft_id=info:pmid/&rfr_iscdi=true