Loading…
Discrepancy: Local/Global Shape Characterization with a Roundness Bias
Disk shape frequently appears as a reference in shape characterization applications. We propose a local measure of deviation from a disk as the local difference between numerical solution of a PDE on the shape and an analytical expression in the form of modified Bessel function. The deviation define...
Saved in:
Published in: | Journal of mathematical imaging and vision 2019-01, Vol.61 (1), p.160-171 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Disk shape frequently appears as a reference in shape characterization applications. We propose a local measure of deviation from a disk as the local difference between numerical solution of a PDE on the shape and an analytical expression in the form of modified Bessel function. The deviation defined at each shape point defines a field over the shape. This field has useful properties, which we demonstrate via illustrative applications ranging from shape decomposition to shape characterization. Furthermore, we show that a global measure extracted from the field is capable of characterizing the body roundness and periphery thickness uniformity. |
---|---|
ISSN: | 0924-9907 1573-7683 |
DOI: | 10.1007/s10851-018-0851-8 |