Loading…
Enhanced Cycling Performance for Lithium–Sulfur Batteries by a Laminated 2D g‐C3N4/Graphene Cathode Interlayer
Decay in electrochemical performance resulting from the “shuttle effect” of dissolved lithium polysulfides is one of the biggest obstacles for the realization of practical applications of lithium–sulfur (Li–S) batteries. To meet this challenge, a 2D g‐C3N4/graphene sheet composite (g‐C3N4/GS) was fa...
Saved in:
Published in: | ChemSusChem 2019-01, Vol.12 (1), p.213-223 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Decay in electrochemical performance resulting from the “shuttle effect” of dissolved lithium polysulfides is one of the biggest obstacles for the realization of practical applications of lithium–sulfur (Li–S) batteries. To meet this challenge, a 2D g‐C3N4/graphene sheet composite (g‐C3N4/GS) was fabricated as an interlayer for a sulfur/carbon (S/KB) cathode. It forms a laminated structure of channels to trap polysulfides by physical and chemical interactions. The thin g‐C3N4/GS interlayer significantly suppresses diffusion of the dissolved polysulfide species (Li2Sx; 2 |
---|---|
ISSN: | 1864-5631 1864-564X |
DOI: | 10.1002/cssc.201802449 |