Loading…

Weighing Melnick 34: the most massive binary system known

Here we confirm Melnick 34, an X-ray bright star in the 30 Doradus region of the Large Magellanic Cloud, as an SB2 binary comprising WN5h+WN5h components. We present orbital solutions using 26 epochs of VLT/UVES spectra and 22 epochs of archival Gemini/GMOS spectra. Radial-velocity monitoring and au...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-01
Main Authors: Tehrani, Katie A, Crowther, Paul A, Bestenlehner, Joachim M, Littlefair, Stuart P, Pollock, A M T, Parker, Richard J, Schnurr, Olivier
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here we confirm Melnick 34, an X-ray bright star in the 30 Doradus region of the Large Magellanic Cloud, as an SB2 binary comprising WN5h+WN5h components. We present orbital solutions using 26 epochs of VLT/UVES spectra and 22 epochs of archival Gemini/GMOS spectra. Radial-velocity monitoring and automated template fitting methods both reveal a similar high eccentricity system with a mass ratio close to unity, and an orbital period in agreement with the 155.1 +/- 1 day X-ray light curve period previously derived by Pollock et al. Our favoured solution derived an eccentricity of 0.68 +/- 0.02 and mass ratio of 0.92 +/- 0.07, giving minimum masses of Ma_sin^{3}(i) = 65 +/- 7 Msun and Mb_sin^{3}(i) = 60 +/- 7 Msun. Spectral modelling using WN5h templates with CMFGEN reveals temperatures of T ~53 kK for each component and luminosities of log(La/Lsun) = 6.43 +/- 0.08 and log(Lb/Lsun) = 6.37 +/- 0.08, from which BONNSAI evolutionary modelling gives masses of Ma = 139 (+21,-18) Msun and Mb = 127 (+17,-17) Msun and ages of ~0.6 Myrs. Spectroscopic and dynamic masses would agree if Mk34 has an inclination of i ~50{\deg}, making Mk34 the most massive binary known and an excellent candidate for investigating the properties of colliding wind binaries. Within 2-3 Myrs, both components of Mk34 are expected to evolve to stellar mass black holes which, assuming the binary system survives, would make Mk34 a potential binary black hole merger progenitor and gravitational wave source.
ISSN:2331-8422
DOI:10.48550/arxiv.1901.04769