Loading…
Sensitivity analysis of the parameter‐efficient distributed (PED) model for discharge and sediment concentration estimation in degraded humid landscapes
Sustainable development in degraded landscapes in the humid tropics requires effective soil and water management practices. Coupled hydrological‐erosion models have been used to understand and predict the underlying processes at watershed scale and the effect of human interventions. One prominent to...
Saved in:
Published in: | Land degradation & development 2019-01, Vol.30 (2), p.151-165 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3502-4f9ac610f4a39050bc40f543f6b3da2cae41cdce6430384500bb2b56f2e037a03 |
---|---|
cites | cdi_FETCH-LOGICAL-a3502-4f9ac610f4a39050bc40f543f6b3da2cae41cdce6430384500bb2b56f2e037a03 |
container_end_page | 165 |
container_issue | 2 |
container_start_page | 151 |
container_title | Land degradation & development |
container_volume | 30 |
creator | Ochoa‐Tocachi, Boris F. Alemie, Tilashwork C. Guzman, Christian D. Tilahun, Seifu A. Zimale, Fasikaw A. Buytaert, Wouter Steenhuis, Tammo S. |
description | Sustainable development in degraded landscapes in the humid tropics requires effective soil and water management practices. Coupled hydrological‐erosion models have been used to understand and predict the underlying processes at watershed scale and the effect of human interventions. One prominent tool is the parameter‐efficient distributed (PED) model, which improves on other models by considering a saturation‐excess runoff generation driving erosion and sediment transport in humid climates. This model has been widely applied at different scales for the humid monsoonal climate of the Ethiopian Highlands, with good success in estimating discharge and sediment concentrations. However, previous studies performed manual calibration of the involved parameters without reporting sensitivity analyses or assessing equifinality. The aim of this article is to provide a multiobjective global sensitivity analysis of the PED model using automatic random sampling implemented in the SAFE Toolbox. We find that relative parameter sensitivity depends greatly on the purpose of model application and the outcomes used for its evaluation. Five of the 13 PED model parameters are insensitive for improving model performance. Additionally, associating behavioural parameter values with a clear physical meaning provides slightly better results and helps interpretation. Lastly, good performance in one module does not translate directly into good performance in the other module. We interpret these results in terms of the represented hydrological and erosion processes and recommend field data to inform model calibration and validation, potentially improving land degradation understanding and prediction and supporting decision‐making for soil and water conservation strategies in degraded humid landscapes. |
doi_str_mv | 10.1002/ldr.3202 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2168070458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168070458</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3502-4f9ac610f4a39050bc40f543f6b3da2cae41cdce6430384500bb2b56f2e037a03</originalsourceid><addsrcrecordid>eNp1kMlKBDEQhhtRcAUfIeBFD62VpZc5io4LDCgu4K1JJ5WZDL2MSUaZm4_g2cfzSUw7Xj3VD_X9P1V_khxSOKUA7KzR7pQzYBvJDoXRKKUie9kcdJmlnBXldrLr_RwAaCGKneTrETtvg32zYUVkJ5uVt570hoQZkoV0ssWA7vvjE42xymIXiLY-OFsvA2pyfD--PCFtr7EhpnfDTs2km2LM0sSjtu1gUX2n4nQy2L4j6INt19J2ROPUSR2zZsvWatJEo1dygX4_2TKy8XjwN_eS56vx08VNOrm7vr04n6SSZ8BSYUZS5RSMkHwEGdRKgMkEN3nNtWRKoqBKK8wFB16KDKCuWZ3lhiHwQgLfS47WuQvXvy7jcdW8X7pYha8YzUsoQGRlpI7XlHK99w5NtXDxC7eqKFRD81Vsvhqaj2i6Rt9tg6t_uWpy-fDL_wAKAYjD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168070458</pqid></control><display><type>article</type><title>Sensitivity analysis of the parameter‐efficient distributed (PED) model for discharge and sediment concentration estimation in degraded humid landscapes</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Ochoa‐Tocachi, Boris F. ; Alemie, Tilashwork C. ; Guzman, Christian D. ; Tilahun, Seifu A. ; Zimale, Fasikaw A. ; Buytaert, Wouter ; Steenhuis, Tammo S.</creator><creatorcontrib>Ochoa‐Tocachi, Boris F. ; Alemie, Tilashwork C. ; Guzman, Christian D. ; Tilahun, Seifu A. ; Zimale, Fasikaw A. ; Buytaert, Wouter ; Steenhuis, Tammo S.</creatorcontrib><description>Sustainable development in degraded landscapes in the humid tropics requires effective soil and water management practices. Coupled hydrological‐erosion models have been used to understand and predict the underlying processes at watershed scale and the effect of human interventions. One prominent tool is the parameter‐efficient distributed (PED) model, which improves on other models by considering a saturation‐excess runoff generation driving erosion and sediment transport in humid climates. This model has been widely applied at different scales for the humid monsoonal climate of the Ethiopian Highlands, with good success in estimating discharge and sediment concentrations. However, previous studies performed manual calibration of the involved parameters without reporting sensitivity analyses or assessing equifinality. The aim of this article is to provide a multiobjective global sensitivity analysis of the PED model using automatic random sampling implemented in the SAFE Toolbox. We find that relative parameter sensitivity depends greatly on the purpose of model application and the outcomes used for its evaluation. Five of the 13 PED model parameters are insensitive for improving model performance. Additionally, associating behavioural parameter values with a clear physical meaning provides slightly better results and helps interpretation. Lastly, good performance in one module does not translate directly into good performance in the other module. We interpret these results in terms of the represented hydrological and erosion processes and recommend field data to inform model calibration and validation, potentially improving land degradation understanding and prediction and supporting decision‐making for soil and water conservation strategies in degraded humid landscapes.</description><identifier>ISSN: 1085-3278</identifier><identifier>EISSN: 1099-145X</identifier><identifier>DOI: 10.1002/ldr.3202</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Calibration ; Climate ; Data processing ; Decision making ; Discharge ; Erosion ; erosion model ; Ethiopia ; global sensitivity analysis ; Humid climates ; Hydrologic data ; Hydrologic models ; Hydrology ; Land degradation ; Land use ; Landscape preservation ; Modules ; multimethod GSA ; Multiple objective analysis ; Parameter sensitivity ; PAWN ; rainfall‐runoff model ; Random sampling ; Runoff ; SAFE Toolbox ; Sediment concentration ; sediment modelling ; Sediment transport ; Sediments ; Sensitivity analysis ; Soil conservation ; Soil erosion ; Soil management ; Soil water ; Statistical sampling ; Sustainable development ; Tropical environments ; Water conservation ; Water management</subject><ispartof>Land degradation & development, 2019-01, Vol.30 (2), p.151-165</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3502-4f9ac610f4a39050bc40f543f6b3da2cae41cdce6430384500bb2b56f2e037a03</citedby><cites>FETCH-LOGICAL-a3502-4f9ac610f4a39050bc40f543f6b3da2cae41cdce6430384500bb2b56f2e037a03</cites><orcidid>0000-0001-9778-2712 ; 0000-0003-0508-9350 ; 0000-0002-4990-8429 ; 0000-0002-5626-799X ; 0000-0002-5219-4527 ; 0000-0002-9978-4049 ; 0000-0001-6994-4454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ochoa‐Tocachi, Boris F.</creatorcontrib><creatorcontrib>Alemie, Tilashwork C.</creatorcontrib><creatorcontrib>Guzman, Christian D.</creatorcontrib><creatorcontrib>Tilahun, Seifu A.</creatorcontrib><creatorcontrib>Zimale, Fasikaw A.</creatorcontrib><creatorcontrib>Buytaert, Wouter</creatorcontrib><creatorcontrib>Steenhuis, Tammo S.</creatorcontrib><title>Sensitivity analysis of the parameter‐efficient distributed (PED) model for discharge and sediment concentration estimation in degraded humid landscapes</title><title>Land degradation & development</title><description>Sustainable development in degraded landscapes in the humid tropics requires effective soil and water management practices. Coupled hydrological‐erosion models have been used to understand and predict the underlying processes at watershed scale and the effect of human interventions. One prominent tool is the parameter‐efficient distributed (PED) model, which improves on other models by considering a saturation‐excess runoff generation driving erosion and sediment transport in humid climates. This model has been widely applied at different scales for the humid monsoonal climate of the Ethiopian Highlands, with good success in estimating discharge and sediment concentrations. However, previous studies performed manual calibration of the involved parameters without reporting sensitivity analyses or assessing equifinality. The aim of this article is to provide a multiobjective global sensitivity analysis of the PED model using automatic random sampling implemented in the SAFE Toolbox. We find that relative parameter sensitivity depends greatly on the purpose of model application and the outcomes used for its evaluation. Five of the 13 PED model parameters are insensitive for improving model performance. Additionally, associating behavioural parameter values with a clear physical meaning provides slightly better results and helps interpretation. Lastly, good performance in one module does not translate directly into good performance in the other module. We interpret these results in terms of the represented hydrological and erosion processes and recommend field data to inform model calibration and validation, potentially improving land degradation understanding and prediction and supporting decision‐making for soil and water conservation strategies in degraded humid landscapes.</description><subject>Calibration</subject><subject>Climate</subject><subject>Data processing</subject><subject>Decision making</subject><subject>Discharge</subject><subject>Erosion</subject><subject>erosion model</subject><subject>Ethiopia</subject><subject>global sensitivity analysis</subject><subject>Humid climates</subject><subject>Hydrologic data</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Land degradation</subject><subject>Land use</subject><subject>Landscape preservation</subject><subject>Modules</subject><subject>multimethod GSA</subject><subject>Multiple objective analysis</subject><subject>Parameter sensitivity</subject><subject>PAWN</subject><subject>rainfall‐runoff model</subject><subject>Random sampling</subject><subject>Runoff</subject><subject>SAFE Toolbox</subject><subject>Sediment concentration</subject><subject>sediment modelling</subject><subject>Sediment transport</subject><subject>Sediments</subject><subject>Sensitivity analysis</subject><subject>Soil conservation</subject><subject>Soil erosion</subject><subject>Soil management</subject><subject>Soil water</subject><subject>Statistical sampling</subject><subject>Sustainable development</subject><subject>Tropical environments</subject><subject>Water conservation</subject><subject>Water management</subject><issn>1085-3278</issn><issn>1099-145X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMlKBDEQhhtRcAUfIeBFD62VpZc5io4LDCgu4K1JJ5WZDL2MSUaZm4_g2cfzSUw7Xj3VD_X9P1V_khxSOKUA7KzR7pQzYBvJDoXRKKUie9kcdJmlnBXldrLr_RwAaCGKneTrETtvg32zYUVkJ5uVt570hoQZkoV0ssWA7vvjE42xymIXiLY-OFsvA2pyfD--PCFtr7EhpnfDTs2km2LM0sSjtu1gUX2n4nQy2L4j6INt19J2ROPUSR2zZsvWatJEo1dygX4_2TKy8XjwN_eS56vx08VNOrm7vr04n6SSZ8BSYUZS5RSMkHwEGdRKgMkEN3nNtWRKoqBKK8wFB16KDKCuWZ3lhiHwQgLfS47WuQvXvy7jcdW8X7pYha8YzUsoQGRlpI7XlHK99w5NtXDxC7eqKFRD81Vsvhqaj2i6Rt9tg6t_uWpy-fDL_wAKAYjD</recordid><startdate>20190130</startdate><enddate>20190130</enddate><creator>Ochoa‐Tocachi, Boris F.</creator><creator>Alemie, Tilashwork C.</creator><creator>Guzman, Christian D.</creator><creator>Tilahun, Seifu A.</creator><creator>Zimale, Fasikaw A.</creator><creator>Buytaert, Wouter</creator><creator>Steenhuis, Tammo S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9778-2712</orcidid><orcidid>https://orcid.org/0000-0003-0508-9350</orcidid><orcidid>https://orcid.org/0000-0002-4990-8429</orcidid><orcidid>https://orcid.org/0000-0002-5626-799X</orcidid><orcidid>https://orcid.org/0000-0002-5219-4527</orcidid><orcidid>https://orcid.org/0000-0002-9978-4049</orcidid><orcidid>https://orcid.org/0000-0001-6994-4454</orcidid></search><sort><creationdate>20190130</creationdate><title>Sensitivity analysis of the parameter‐efficient distributed (PED) model for discharge and sediment concentration estimation in degraded humid landscapes</title><author>Ochoa‐Tocachi, Boris F. ; Alemie, Tilashwork C. ; Guzman, Christian D. ; Tilahun, Seifu A. ; Zimale, Fasikaw A. ; Buytaert, Wouter ; Steenhuis, Tammo S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3502-4f9ac610f4a39050bc40f543f6b3da2cae41cdce6430384500bb2b56f2e037a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calibration</topic><topic>Climate</topic><topic>Data processing</topic><topic>Decision making</topic><topic>Discharge</topic><topic>Erosion</topic><topic>erosion model</topic><topic>Ethiopia</topic><topic>global sensitivity analysis</topic><topic>Humid climates</topic><topic>Hydrologic data</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Land degradation</topic><topic>Land use</topic><topic>Landscape preservation</topic><topic>Modules</topic><topic>multimethod GSA</topic><topic>Multiple objective analysis</topic><topic>Parameter sensitivity</topic><topic>PAWN</topic><topic>rainfall‐runoff model</topic><topic>Random sampling</topic><topic>Runoff</topic><topic>SAFE Toolbox</topic><topic>Sediment concentration</topic><topic>sediment modelling</topic><topic>Sediment transport</topic><topic>Sediments</topic><topic>Sensitivity analysis</topic><topic>Soil conservation</topic><topic>Soil erosion</topic><topic>Soil management</topic><topic>Soil water</topic><topic>Statistical sampling</topic><topic>Sustainable development</topic><topic>Tropical environments</topic><topic>Water conservation</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochoa‐Tocachi, Boris F.</creatorcontrib><creatorcontrib>Alemie, Tilashwork C.</creatorcontrib><creatorcontrib>Guzman, Christian D.</creatorcontrib><creatorcontrib>Tilahun, Seifu A.</creatorcontrib><creatorcontrib>Zimale, Fasikaw A.</creatorcontrib><creatorcontrib>Buytaert, Wouter</creatorcontrib><creatorcontrib>Steenhuis, Tammo S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Land degradation & development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochoa‐Tocachi, Boris F.</au><au>Alemie, Tilashwork C.</au><au>Guzman, Christian D.</au><au>Tilahun, Seifu A.</au><au>Zimale, Fasikaw A.</au><au>Buytaert, Wouter</au><au>Steenhuis, Tammo S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity analysis of the parameter‐efficient distributed (PED) model for discharge and sediment concentration estimation in degraded humid landscapes</atitle><jtitle>Land degradation & development</jtitle><date>2019-01-30</date><risdate>2019</risdate><volume>30</volume><issue>2</issue><spage>151</spage><epage>165</epage><pages>151-165</pages><issn>1085-3278</issn><eissn>1099-145X</eissn><abstract>Sustainable development in degraded landscapes in the humid tropics requires effective soil and water management practices. Coupled hydrological‐erosion models have been used to understand and predict the underlying processes at watershed scale and the effect of human interventions. One prominent tool is the parameter‐efficient distributed (PED) model, which improves on other models by considering a saturation‐excess runoff generation driving erosion and sediment transport in humid climates. This model has been widely applied at different scales for the humid monsoonal climate of the Ethiopian Highlands, with good success in estimating discharge and sediment concentrations. However, previous studies performed manual calibration of the involved parameters without reporting sensitivity analyses or assessing equifinality. The aim of this article is to provide a multiobjective global sensitivity analysis of the PED model using automatic random sampling implemented in the SAFE Toolbox. We find that relative parameter sensitivity depends greatly on the purpose of model application and the outcomes used for its evaluation. Five of the 13 PED model parameters are insensitive for improving model performance. Additionally, associating behavioural parameter values with a clear physical meaning provides slightly better results and helps interpretation. Lastly, good performance in one module does not translate directly into good performance in the other module. We interpret these results in terms of the represented hydrological and erosion processes and recommend field data to inform model calibration and validation, potentially improving land degradation understanding and prediction and supporting decision‐making for soil and water conservation strategies in degraded humid landscapes.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ldr.3202</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9778-2712</orcidid><orcidid>https://orcid.org/0000-0003-0508-9350</orcidid><orcidid>https://orcid.org/0000-0002-4990-8429</orcidid><orcidid>https://orcid.org/0000-0002-5626-799X</orcidid><orcidid>https://orcid.org/0000-0002-5219-4527</orcidid><orcidid>https://orcid.org/0000-0002-9978-4049</orcidid><orcidid>https://orcid.org/0000-0001-6994-4454</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3278 |
ispartof | Land degradation & development, 2019-01, Vol.30 (2), p.151-165 |
issn | 1085-3278 1099-145X |
language | eng |
recordid | cdi_proquest_journals_2168070458 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Calibration Climate Data processing Decision making Discharge Erosion erosion model Ethiopia global sensitivity analysis Humid climates Hydrologic data Hydrologic models Hydrology Land degradation Land use Landscape preservation Modules multimethod GSA Multiple objective analysis Parameter sensitivity PAWN rainfall‐runoff model Random sampling Runoff SAFE Toolbox Sediment concentration sediment modelling Sediment transport Sediments Sensitivity analysis Soil conservation Soil erosion Soil management Soil water Statistical sampling Sustainable development Tropical environments Water conservation Water management |
title | Sensitivity analysis of the parameter‐efficient distributed (PED) model for discharge and sediment concentration estimation in degraded humid landscapes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20analysis%20of%20the%20parameter%E2%80%90efficient%20distributed%20(PED)%20model%20for%20discharge%20and%20sediment%20concentration%20estimation%20in%20degraded%20humid%20landscapes&rft.jtitle=Land%20degradation%20&%20development&rft.au=Ochoa%E2%80%90Tocachi,%20Boris%20F.&rft.date=2019-01-30&rft.volume=30&rft.issue=2&rft.spage=151&rft.epage=165&rft.pages=151-165&rft.issn=1085-3278&rft.eissn=1099-145X&rft_id=info:doi/10.1002/ldr.3202&rft_dat=%3Cproquest_cross%3E2168070458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3502-4f9ac610f4a39050bc40f543f6b3da2cae41cdce6430384500bb2b56f2e037a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2168070458&rft_id=info:pmid/&rfr_iscdi=true |