Loading…

A Computational Determination of the Origins of Diastereoselective Alkylations of a Cysteinesulfenate Anion

Sulfenic acid anions (RSO–) represent an untapped functional group for the formation of sulfoxides and other organic compounds. Their stereoselective alkylation is an important component of this chemistry, but factors governing reaction outcomes are not fully understood. The current study uses Densi...

Full description

Saved in:
Bibliographic Details
Published in:European journal of organic chemistry 2019-01, Vol.2019 (2-3), p.519-526
Main Author: Schwan, Adrian L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3173-504dba44dfc6c641c8adae32f9b773f2271711309265f75110ceb41b14b252cd3
cites cdi_FETCH-LOGICAL-c3173-504dba44dfc6c641c8adae32f9b773f2271711309265f75110ceb41b14b252cd3
container_end_page 526
container_issue 2-3
container_start_page 519
container_title European journal of organic chemistry
container_volume 2019
creator Schwan, Adrian L.
description Sulfenic acid anions (RSO–) represent an untapped functional group for the formation of sulfoxides and other organic compounds. Their stereoselective alkylation is an important component of this chemistry, but factors governing reaction outcomes are not fully understood. The current study uses Density Functional Theory methods to break down the influencing roles of substituents attached to 2‐aminoethanesulfenate. The lithium counterion can be coordinated to pendant ester or carbamate carbonyl groups, whereas the sulfenate oxygen readily participates in hydrogen bonding with proximal hydrogen atoms of the (protected) amino group. A Moc‐protected, ester substituted, 2‐aminoethanesulfenate adopts both lithium coordination and hydrogen bonding in the lowest energy form and demonstrates stereoselective methylation and benzylation consistent with experiments from the literature. Density functional theory is employed to understand the preferred conformations adopted by a protected lithium cysteinesulfenate anion. Both sulfenate oxygen hydrogen bonding and carbonyl coordination of the substituents to the lithium counterion were found to be important stabilization modes. A preferred structure to account for diastereoselective methylation and benzylation at sulfur has been found.
doi_str_mv 10.1002/ejoc.201801053
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2168087834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168087834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-504dba44dfc6c641c8adae32f9b773f2271711309265f75110ceb41b14b252cd3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhCMEEqVw5RyJc8qu7Tx8rNLyUqVeQOJmOa4DbtO42Ako_x63RXDktDvab0baiaJrhAkCkFu9tmpCAAtASOlJNELgPIGMw2nYGWUJcvp6Hl14vwYAnmU4ijbTuLTbXd_JzthWNvFMd9ptTXvQsa3j7l3HS2feTOv3cmakD4S2XjdadeZTx9NmMzQH_kDIuBwCYlrt-6bWISkgbbheRme1bLy--pnj6OVu_lw-JIvl_WM5XSSKYk6TFNiqkoytapWpjKEq5EpqSmpe5TmtCckxR6TASZbWeYoISlcMK2QVSYla0XF0c8zdOfvRa9-Jte1deM4LglkBRV5QFqjJkVLOeu90LXbObKUbBILYFyr2hYrfQoOBHw1fptHDP7SYPy3LP-83z5N7Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168087834</pqid></control><display><type>article</type><title>A Computational Determination of the Origins of Diastereoselective Alkylations of a Cysteinesulfenate Anion</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Schwan, Adrian L.</creator><creatorcontrib>Schwan, Adrian L.</creatorcontrib><description>Sulfenic acid anions (RSO–) represent an untapped functional group for the formation of sulfoxides and other organic compounds. Their stereoselective alkylation is an important component of this chemistry, but factors governing reaction outcomes are not fully understood. The current study uses Density Functional Theory methods to break down the influencing roles of substituents attached to 2‐aminoethanesulfenate. The lithium counterion can be coordinated to pendant ester or carbamate carbonyl groups, whereas the sulfenate oxygen readily participates in hydrogen bonding with proximal hydrogen atoms of the (protected) amino group. A Moc‐protected, ester substituted, 2‐aminoethanesulfenate adopts both lithium coordination and hydrogen bonding in the lowest energy form and demonstrates stereoselective methylation and benzylation consistent with experiments from the literature. Density functional theory is employed to understand the preferred conformations adopted by a protected lithium cysteinesulfenate anion. Both sulfenate oxygen hydrogen bonding and carbonyl coordination of the substituents to the lithium counterion were found to be important stabilization modes. A preferred structure to account for diastereoselective methylation and benzylation at sulfur has been found.</description><identifier>ISSN: 1434-193X</identifier><identifier>EISSN: 1099-0690</identifier><identifier>DOI: 10.1002/ejoc.201801053</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alkylation ; Anions ; Carbonyl groups ; Carbonyls ; Computational chemistry ; Density functional calculations ; Density functional theory ; Diastereoselectivity ; Functional groups ; Hydrogen atoms ; Hydrogen bonding ; Lithium ; Methylation ; Organic chemistry ; Organic compounds ; Organosulfur compounds ; Stereoselectivity ; Sulfenates</subject><ispartof>European journal of organic chemistry, 2019-01, Vol.2019 (2-3), p.519-526</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-504dba44dfc6c641c8adae32f9b773f2271711309265f75110ceb41b14b252cd3</citedby><cites>FETCH-LOGICAL-c3173-504dba44dfc6c641c8adae32f9b773f2271711309265f75110ceb41b14b252cd3</cites><orcidid>0000-0003-3362-9633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Schwan, Adrian L.</creatorcontrib><title>A Computational Determination of the Origins of Diastereoselective Alkylations of a Cysteinesulfenate Anion</title><title>European journal of organic chemistry</title><description>Sulfenic acid anions (RSO–) represent an untapped functional group for the formation of sulfoxides and other organic compounds. Their stereoselective alkylation is an important component of this chemistry, but factors governing reaction outcomes are not fully understood. The current study uses Density Functional Theory methods to break down the influencing roles of substituents attached to 2‐aminoethanesulfenate. The lithium counterion can be coordinated to pendant ester or carbamate carbonyl groups, whereas the sulfenate oxygen readily participates in hydrogen bonding with proximal hydrogen atoms of the (protected) amino group. A Moc‐protected, ester substituted, 2‐aminoethanesulfenate adopts both lithium coordination and hydrogen bonding in the lowest energy form and demonstrates stereoselective methylation and benzylation consistent with experiments from the literature. Density functional theory is employed to understand the preferred conformations adopted by a protected lithium cysteinesulfenate anion. Both sulfenate oxygen hydrogen bonding and carbonyl coordination of the substituents to the lithium counterion were found to be important stabilization modes. A preferred structure to account for diastereoselective methylation and benzylation at sulfur has been found.</description><subject>Alkylation</subject><subject>Anions</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Computational chemistry</subject><subject>Density functional calculations</subject><subject>Density functional theory</subject><subject>Diastereoselectivity</subject><subject>Functional groups</subject><subject>Hydrogen atoms</subject><subject>Hydrogen bonding</subject><subject>Lithium</subject><subject>Methylation</subject><subject>Organic chemistry</subject><subject>Organic compounds</subject><subject>Organosulfur compounds</subject><subject>Stereoselectivity</subject><subject>Sulfenates</subject><issn>1434-193X</issn><issn>1099-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhCMEEqVw5RyJc8qu7Tx8rNLyUqVeQOJmOa4DbtO42Ako_x63RXDktDvab0baiaJrhAkCkFu9tmpCAAtASOlJNELgPIGMw2nYGWUJcvp6Hl14vwYAnmU4ijbTuLTbXd_JzthWNvFMd9ptTXvQsa3j7l3HS2feTOv3cmakD4S2XjdadeZTx9NmMzQH_kDIuBwCYlrt-6bWISkgbbheRme1bLy--pnj6OVu_lw-JIvl_WM5XSSKYk6TFNiqkoytapWpjKEq5EpqSmpe5TmtCckxR6TASZbWeYoISlcMK2QVSYla0XF0c8zdOfvRa9-Jte1deM4LglkBRV5QFqjJkVLOeu90LXbObKUbBILYFyr2hYrfQoOBHw1fptHDP7SYPy3LP-83z5N7Jg</recordid><startdate>20190123</startdate><enddate>20190123</enddate><creator>Schwan, Adrian L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3362-9633</orcidid></search><sort><creationdate>20190123</creationdate><title>A Computational Determination of the Origins of Diastereoselective Alkylations of a Cysteinesulfenate Anion</title><author>Schwan, Adrian L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-504dba44dfc6c641c8adae32f9b773f2271711309265f75110ceb41b14b252cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkylation</topic><topic>Anions</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Computational chemistry</topic><topic>Density functional calculations</topic><topic>Density functional theory</topic><topic>Diastereoselectivity</topic><topic>Functional groups</topic><topic>Hydrogen atoms</topic><topic>Hydrogen bonding</topic><topic>Lithium</topic><topic>Methylation</topic><topic>Organic chemistry</topic><topic>Organic compounds</topic><topic>Organosulfur compounds</topic><topic>Stereoselectivity</topic><topic>Sulfenates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwan, Adrian L.</creatorcontrib><collection>CrossRef</collection><jtitle>European journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwan, Adrian L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Determination of the Origins of Diastereoselective Alkylations of a Cysteinesulfenate Anion</atitle><jtitle>European journal of organic chemistry</jtitle><date>2019-01-23</date><risdate>2019</risdate><volume>2019</volume><issue>2-3</issue><spage>519</spage><epage>526</epage><pages>519-526</pages><issn>1434-193X</issn><eissn>1099-0690</eissn><abstract>Sulfenic acid anions (RSO–) represent an untapped functional group for the formation of sulfoxides and other organic compounds. Their stereoselective alkylation is an important component of this chemistry, but factors governing reaction outcomes are not fully understood. The current study uses Density Functional Theory methods to break down the influencing roles of substituents attached to 2‐aminoethanesulfenate. The lithium counterion can be coordinated to pendant ester or carbamate carbonyl groups, whereas the sulfenate oxygen readily participates in hydrogen bonding with proximal hydrogen atoms of the (protected) amino group. A Moc‐protected, ester substituted, 2‐aminoethanesulfenate adopts both lithium coordination and hydrogen bonding in the lowest energy form and demonstrates stereoselective methylation and benzylation consistent with experiments from the literature. Density functional theory is employed to understand the preferred conformations adopted by a protected lithium cysteinesulfenate anion. Both sulfenate oxygen hydrogen bonding and carbonyl coordination of the substituents to the lithium counterion were found to be important stabilization modes. A preferred structure to account for diastereoselective methylation and benzylation at sulfur has been found.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejoc.201801053</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3362-9633</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-193X
ispartof European journal of organic chemistry, 2019-01, Vol.2019 (2-3), p.519-526
issn 1434-193X
1099-0690
language eng
recordid cdi_proquest_journals_2168087834
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Alkylation
Anions
Carbonyl groups
Carbonyls
Computational chemistry
Density functional calculations
Density functional theory
Diastereoselectivity
Functional groups
Hydrogen atoms
Hydrogen bonding
Lithium
Methylation
Organic chemistry
Organic compounds
Organosulfur compounds
Stereoselectivity
Sulfenates
title A Computational Determination of the Origins of Diastereoselective Alkylations of a Cysteinesulfenate Anion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Determination%20of%20the%20Origins%20of%20Diastereoselective%20Alkylations%20of%20a%20Cysteinesulfenate%20Anion&rft.jtitle=European%20journal%20of%20organic%20chemistry&rft.au=Schwan,%20Adrian%20L.&rft.date=2019-01-23&rft.volume=2019&rft.issue=2-3&rft.spage=519&rft.epage=526&rft.pages=519-526&rft.issn=1434-193X&rft.eissn=1099-0690&rft_id=info:doi/10.1002/ejoc.201801053&rft_dat=%3Cproquest_cross%3E2168087834%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3173-504dba44dfc6c641c8adae32f9b773f2271711309265f75110ceb41b14b252cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2168087834&rft_id=info:pmid/&rfr_iscdi=true