Loading…
Hyphenating Supramolecular Solvents and Liquid Chromatography: Tips for Efficient Extraction and Reliable Determination of Organics
Supramolecular solvents (SUPRASs) are nanostructured liquids produced by the self-assembly of amphiphiles at the molecular, nano and micro scale that offer excellent opportunities to be tailored through the bottom-up approach. They have a great potential for the setting-up of generalized sample trea...
Saved in:
Published in: | Chromatographia 2019-01, Vol.82 (1), p.111-124 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Supramolecular solvents (SUPRASs) are nanostructured liquids produced by the self-assembly of amphiphiles at the molecular, nano and micro scale that offer excellent opportunities to be tailored through the bottom-up approach. They have a great potential for the setting-up of generalized sample treatments and multiresidue analysis due to their multi-binding capacity and tunability. Efficient extraction schemes can be developed thanks to the variety of interactions (dispersive, ionic, polar, etc.) they offer for solute solubilization. SUPRASs are simply synthesized by spontaneous processes and are considered as green alternatives to typical organic solvents (low toxicity, flammability, etc.). This review highlights those theoretical and practical aspects related to the synthesis and application of SUPRASs on which one should focus to exploit their benefits for the setting-up of efficient and reliable analytical schemes. It aims to provide a practical guide for SUPRAS selection and optimization in the analysis of organics by liquid chromatography (LC) separation and common LC detectors. Theoretical and operational aspects of SUPRAS are discussed with the aim of providing fundamental knowledge to potential users and facilitate implementation of SUPRAS-based methods in laboratories. Although the appealing power of self-assembly to give tailored SUPRASs remains largely unexplored, advances and opportunities regarding tailored SUPRAS are highlighted.
Graphical Abstract |
---|---|
ISSN: | 0009-5893 1612-1112 |
DOI: | 10.1007/s10337-018-3614-1 |