Loading…
Effect of microheterogeneous environments of CTAB, Triton X‐100, and Tween 20 on the oxidative degradation of d‐fructose by nanoparticles of MnO2
The kinetics of the oxidative degradation of d‐fructose by nanoparticles of MnO2 has been studied in dilute sulfuric acid medium and also in the presence of surfactants of cetyl trimethyl ammonium bromide (CTAB), Triton X‐100 (TX‐100), and Tween 20. Amorphous nanoparticles of MnO2 in the form of sph...
Saved in:
Published in: | International journal of chemical kinetics 2019-03, Vol.51 (3), p.149-160 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 160 |
container_issue | 3 |
container_start_page | 149 |
container_title | International journal of chemical kinetics |
container_volume | 51 |
creator | Midya, Jayanta K. Ghosh, Dinesh C. Pal, Biswajit Sen, Pratik K. |
description | The kinetics of the oxidative degradation of d‐fructose by nanoparticles of MnO2 has been studied in dilute sulfuric acid medium and also in the presence of surfactants of cetyl trimethyl ammonium bromide (CTAB), Triton X‐100 (TX‐100), and Tween 20. Amorphous nanoparticles of MnO2 in the form of spherical particulates of size 50–200 nm, as detected by a transmission electron microscope, have been found to exist, supported on two‐dimensional gum acacia sheets. The reaction is first order in MnO2 but complex order with respect to fructose and H+. The reaction is inhibited due to adsorption of reaction products on the surface of MnO2 nanoparticles. The reaction takes place through an intermediate complex formation between β‐d‐fructopyranose and protonated MnO2. A one‐step two‐electron transfer reaction ultimately leads to the formation of an aldonic acid and formic acid. The entropy of activation plays the key role for the reaction in the absence of surfactants. In the surfactant‐mediated reaction, partitioning of both the reactants takes place between the aqueous and micellar pseudophases and reaction occurs following Berezin's model. Binding of fructose with the surfactants in the Stern/palisade layer takes place through the ion–dipole interaction and H‐bonding while protonated MnO2 remains at the outer side of the Stern/palisade layer within the micelle. Both the enthalpy and entropy changes associated with the fructose–water interaction, fructose–micelle interaction, and micelle–water interaction finally control the fructose–micelle binding. |
doi_str_mv | 10.1002/kin.21239 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2169173822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169173822</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2239-4f35efff11d3de7577dce7e4ea905820456c18b6a650be9676e7b3dfe4ed25f93</originalsourceid><addsrcrecordid>eNotkMFOAjEURRujiYgu_IMmbhloO0xnZokElYiywcTdpDN9hSK0Y6eI7PwEN_6gX2IBV-8m77578i5C15R0KSGs96ZNl1EW5yeoRUmeRn1O6ClqkSTOooxwfo4ummZJCMlzmrTQz0gpqDy2Cq915ewCPDg7BwN202AwH9pZswbjm71lOBvcdvDMaW8Nfv39-g7MDhZG4tkWwGBGcFj4BWD7qaXw-gOwhLkTex02IUKGK-U2lbcN4HKHjTC2Fs7ragUHxpOZskt0psSqgav_2UYvd6PZ8CGaTO_Hw8Ekqll4MeqrOAGlFKUylpAmaSorSKEPIidJxkg_4RXNSi54QkrIecohLWOpgkOyROVxG90cc2tn3zfQ-GJpN84EZMEoz2kaZwHURr2ja6tXsCtqp9fC7QpKin3lRai8OFRePI6fDyL-A2nweK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169173822</pqid></control><display><type>article</type><title>Effect of microheterogeneous environments of CTAB, Triton X‐100, and Tween 20 on the oxidative degradation of d‐fructose by nanoparticles of MnO2</title><source>Wiley</source><creator>Midya, Jayanta K. ; Ghosh, Dinesh C. ; Pal, Biswajit ; Sen, Pratik K.</creator><creatorcontrib>Midya, Jayanta K. ; Ghosh, Dinesh C. ; Pal, Biswajit ; Sen, Pratik K.</creatorcontrib><description>The kinetics of the oxidative degradation of d‐fructose by nanoparticles of MnO2 has been studied in dilute sulfuric acid medium and also in the presence of surfactants of cetyl trimethyl ammonium bromide (CTAB), Triton X‐100 (TX‐100), and Tween 20. Amorphous nanoparticles of MnO2 in the form of spherical particulates of size 50–200 nm, as detected by a transmission electron microscope, have been found to exist, supported on two‐dimensional gum acacia sheets. The reaction is first order in MnO2 but complex order with respect to fructose and H+. The reaction is inhibited due to adsorption of reaction products on the surface of MnO2 nanoparticles. The reaction takes place through an intermediate complex formation between β‐d‐fructopyranose and protonated MnO2. A one‐step two‐electron transfer reaction ultimately leads to the formation of an aldonic acid and formic acid. The entropy of activation plays the key role for the reaction in the absence of surfactants. In the surfactant‐mediated reaction, partitioning of both the reactants takes place between the aqueous and micellar pseudophases and reaction occurs following Berezin's model. Binding of fructose with the surfactants in the Stern/palisade layer takes place through the ion–dipole interaction and H‐bonding while protonated MnO2 remains at the outer side of the Stern/palisade layer within the micelle. Both the enthalpy and entropy changes associated with the fructose–water interaction, fructose–micelle interaction, and micelle–water interaction finally control the fructose–micelle binding.</description><identifier>ISSN: 0538-8066</identifier><identifier>EISSN: 1097-4601</identifier><identifier>DOI: 10.1002/kin.21239</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Berezin model ; Binding ; Cetyltrimethylammonium bromide ; Complex formation ; Degradation ; Dipole interactions ; Electron transfer ; Enthalpy ; Entropy of activation ; Formic acid ; Fructose ; kinetics ; Manganese dioxide ; Micelles ; MnO2 nanoparticles ; Nanoparticles ; Oxidation ; Particulates ; Reaction kinetics ; Reaction products ; Sulfuric acid ; surfactant effects ; Surfactants ; Triton</subject><ispartof>International journal of chemical kinetics, 2019-03, Vol.51 (3), p.149-160</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5863-0959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Midya, Jayanta K.</creatorcontrib><creatorcontrib>Ghosh, Dinesh C.</creatorcontrib><creatorcontrib>Pal, Biswajit</creatorcontrib><creatorcontrib>Sen, Pratik K.</creatorcontrib><title>Effect of microheterogeneous environments of CTAB, Triton X‐100, and Tween 20 on the oxidative degradation of d‐fructose by nanoparticles of MnO2</title><title>International journal of chemical kinetics</title><description>The kinetics of the oxidative degradation of d‐fructose by nanoparticles of MnO2 has been studied in dilute sulfuric acid medium and also in the presence of surfactants of cetyl trimethyl ammonium bromide (CTAB), Triton X‐100 (TX‐100), and Tween 20. Amorphous nanoparticles of MnO2 in the form of spherical particulates of size 50–200 nm, as detected by a transmission electron microscope, have been found to exist, supported on two‐dimensional gum acacia sheets. The reaction is first order in MnO2 but complex order with respect to fructose and H+. The reaction is inhibited due to adsorption of reaction products on the surface of MnO2 nanoparticles. The reaction takes place through an intermediate complex formation between β‐d‐fructopyranose and protonated MnO2. A one‐step two‐electron transfer reaction ultimately leads to the formation of an aldonic acid and formic acid. The entropy of activation plays the key role for the reaction in the absence of surfactants. In the surfactant‐mediated reaction, partitioning of both the reactants takes place between the aqueous and micellar pseudophases and reaction occurs following Berezin's model. Binding of fructose with the surfactants in the Stern/palisade layer takes place through the ion–dipole interaction and H‐bonding while protonated MnO2 remains at the outer side of the Stern/palisade layer within the micelle. Both the enthalpy and entropy changes associated with the fructose–water interaction, fructose–micelle interaction, and micelle–water interaction finally control the fructose–micelle binding.</description><subject>Berezin model</subject><subject>Binding</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Complex formation</subject><subject>Degradation</subject><subject>Dipole interactions</subject><subject>Electron transfer</subject><subject>Enthalpy</subject><subject>Entropy of activation</subject><subject>Formic acid</subject><subject>Fructose</subject><subject>kinetics</subject><subject>Manganese dioxide</subject><subject>Micelles</subject><subject>MnO2 nanoparticles</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Particulates</subject><subject>Reaction kinetics</subject><subject>Reaction products</subject><subject>Sulfuric acid</subject><subject>surfactant effects</subject><subject>Surfactants</subject><subject>Triton</subject><issn>0538-8066</issn><issn>1097-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkMFOAjEURRujiYgu_IMmbhloO0xnZokElYiywcTdpDN9hSK0Y6eI7PwEN_6gX2IBV-8m77578i5C15R0KSGs96ZNl1EW5yeoRUmeRn1O6ClqkSTOooxwfo4ummZJCMlzmrTQz0gpqDy2Cq915ewCPDg7BwN202AwH9pZswbjm71lOBvcdvDMaW8Nfv39-g7MDhZG4tkWwGBGcFj4BWD7qaXw-gOwhLkTex02IUKGK-U2lbcN4HKHjTC2Fs7ragUHxpOZskt0psSqgav_2UYvd6PZ8CGaTO_Hw8Ekqll4MeqrOAGlFKUylpAmaSorSKEPIidJxkg_4RXNSi54QkrIecohLWOpgkOyROVxG90cc2tn3zfQ-GJpN84EZMEoz2kaZwHURr2ja6tXsCtqp9fC7QpKin3lRai8OFRePI6fDyL-A2nweK0</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Midya, Jayanta K.</creator><creator>Ghosh, Dinesh C.</creator><creator>Pal, Biswajit</creator><creator>Sen, Pratik K.</creator><general>Wiley Subscription Services, Inc</general><scope/><orcidid>https://orcid.org/0000-0002-5863-0959</orcidid></search><sort><creationdate>201903</creationdate><title>Effect of microheterogeneous environments of CTAB, Triton X‐100, and Tween 20 on the oxidative degradation of d‐fructose by nanoparticles of MnO2</title><author>Midya, Jayanta K. ; Ghosh, Dinesh C. ; Pal, Biswajit ; Sen, Pratik K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2239-4f35efff11d3de7577dce7e4ea905820456c18b6a650be9676e7b3dfe4ed25f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Berezin model</topic><topic>Binding</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Complex formation</topic><topic>Degradation</topic><topic>Dipole interactions</topic><topic>Electron transfer</topic><topic>Enthalpy</topic><topic>Entropy of activation</topic><topic>Formic acid</topic><topic>Fructose</topic><topic>kinetics</topic><topic>Manganese dioxide</topic><topic>Micelles</topic><topic>MnO2 nanoparticles</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Particulates</topic><topic>Reaction kinetics</topic><topic>Reaction products</topic><topic>Sulfuric acid</topic><topic>surfactant effects</topic><topic>Surfactants</topic><topic>Triton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Midya, Jayanta K.</creatorcontrib><creatorcontrib>Ghosh, Dinesh C.</creatorcontrib><creatorcontrib>Pal, Biswajit</creatorcontrib><creatorcontrib>Sen, Pratik K.</creatorcontrib><jtitle>International journal of chemical kinetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Midya, Jayanta K.</au><au>Ghosh, Dinesh C.</au><au>Pal, Biswajit</au><au>Sen, Pratik K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of microheterogeneous environments of CTAB, Triton X‐100, and Tween 20 on the oxidative degradation of d‐fructose by nanoparticles of MnO2</atitle><jtitle>International journal of chemical kinetics</jtitle><date>2019-03</date><risdate>2019</risdate><volume>51</volume><issue>3</issue><spage>149</spage><epage>160</epage><pages>149-160</pages><issn>0538-8066</issn><eissn>1097-4601</eissn><abstract>The kinetics of the oxidative degradation of d‐fructose by nanoparticles of MnO2 has been studied in dilute sulfuric acid medium and also in the presence of surfactants of cetyl trimethyl ammonium bromide (CTAB), Triton X‐100 (TX‐100), and Tween 20. Amorphous nanoparticles of MnO2 in the form of spherical particulates of size 50–200 nm, as detected by a transmission electron microscope, have been found to exist, supported on two‐dimensional gum acacia sheets. The reaction is first order in MnO2 but complex order with respect to fructose and H+. The reaction is inhibited due to adsorption of reaction products on the surface of MnO2 nanoparticles. The reaction takes place through an intermediate complex formation between β‐d‐fructopyranose and protonated MnO2. A one‐step two‐electron transfer reaction ultimately leads to the formation of an aldonic acid and formic acid. The entropy of activation plays the key role for the reaction in the absence of surfactants. In the surfactant‐mediated reaction, partitioning of both the reactants takes place between the aqueous and micellar pseudophases and reaction occurs following Berezin's model. Binding of fructose with the surfactants in the Stern/palisade layer takes place through the ion–dipole interaction and H‐bonding while protonated MnO2 remains at the outer side of the Stern/palisade layer within the micelle. Both the enthalpy and entropy changes associated with the fructose–water interaction, fructose–micelle interaction, and micelle–water interaction finally control the fructose–micelle binding.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/kin.21239</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5863-0959</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0538-8066 |
ispartof | International journal of chemical kinetics, 2019-03, Vol.51 (3), p.149-160 |
issn | 0538-8066 1097-4601 |
language | eng |
recordid | cdi_proquest_journals_2169173822 |
source | Wiley |
subjects | Berezin model Binding Cetyltrimethylammonium bromide Complex formation Degradation Dipole interactions Electron transfer Enthalpy Entropy of activation Formic acid Fructose kinetics Manganese dioxide Micelles MnO2 nanoparticles Nanoparticles Oxidation Particulates Reaction kinetics Reaction products Sulfuric acid surfactant effects Surfactants Triton |
title | Effect of microheterogeneous environments of CTAB, Triton X‐100, and Tween 20 on the oxidative degradation of d‐fructose by nanoparticles of MnO2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20microheterogeneous%20environments%20of%20CTAB,%20Triton%20X%E2%80%90100,%20and%20Tween%2020%20on%20the%20oxidative%20degradation%20of%20d%E2%80%90fructose%20by%20nanoparticles%20of%20MnO2&rft.jtitle=International%20journal%20of%20chemical%20kinetics&rft.au=Midya,%20Jayanta%20K.&rft.date=2019-03&rft.volume=51&rft.issue=3&rft.spage=149&rft.epage=160&rft.pages=149-160&rft.issn=0538-8066&rft.eissn=1097-4601&rft_id=info:doi/10.1002/kin.21239&rft_dat=%3Cproquest_wiley%3E2169173822%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2239-4f35efff11d3de7577dce7e4ea905820456c18b6a650be9676e7b3dfe4ed25f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2169173822&rft_id=info:pmid/&rfr_iscdi=true |