Loading…
Electroluminescent Cooling in III-V Intracavity Diodes: Practical Requirements
Recent studies of electroluminescent cooling (ELC) in III-V structures demonstrate the need to better understand the factors affecting the efficiency of light emission and energy transport in light-emitting diodes (LEDs). In this paper, we establish the physical and operational requirements for reac...
Saved in:
Published in: | IEEE transactions on electron devices 2019-02, Vol.66 (2), p.963-968 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463 |
container_end_page | 968 |
container_issue | 2 |
container_start_page | 963 |
container_title | IEEE transactions on electron devices |
container_volume | 66 |
creator | Sadi, Toufik Radevici, Ivan Kivisaari, Pyry Oksanen, Jani |
description | Recent studies of electroluminescent cooling (ELC) in III-V structures demonstrate the need to better understand the factors affecting the efficiency of light emission and energy transport in light-emitting diodes (LEDs). In this paper, we establish the physical and operational requirements for reaching the efficiencies needed for observing ELC in the III-V intracavity double-diode structures at high powers. The experimentally validated modeling framework used in this paper, coupling the drift-diffusion charge transport model with a photon transport model, indicates that the bulk properties of the III-V materials are already sufficient for ELC. Furthermore, the results suggest that the bulk power conversion efficiency of the LED in the devices, which allowed the experimentally measured record high coupling quantum efficiency of 70%, already exceeds 115%. However, as shown here, direct observation of ELC by electrical measurements still requires a combination of a more efficient suppression of the nonradiative surface recombination at the LED walls and the reduction of the detection losses in the photodetector of the intracavity structures. |
doi_str_mv | 10.1109/TED.2018.2885267 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2169440110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8580415</ieee_id><sourcerecordid>2169440110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC56353sSbtFUXiopUryHNzkrKdrdNdoX-e1NaPA0z87wz8CB0S_CEEKwflvPZhGKiJlQpQWVxhkZEiCLXkstzNMJplWum2CW6inGdWsk5HaG3eQOuD10zbHwL0UHbZ9Oua3z7k_k2K8sy_87Ktg_W2V_f77OZ7yqIj9lHmvTe2Sb7hN3gA2xSNF6ji9o2EW5OdYy-nufL6Wu-eH8pp0-L3DHG-pxIsXK01tqRWqjKaoVloVZEWSgKXVAtNfCitspZple41omxjqtK1ZxVXLIxuj_e3YZuN0DszbobQpteGkqk5hwnKYnCR8qFLsYAtdkGv7Fhbwg2B2smWTMHa-ZkLUXujhEPAP-4EgpzItgfWvVoMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169440110</pqid></control><display><type>article</type><title>Electroluminescent Cooling in III-V Intracavity Diodes: Practical Requirements</title><source>IEEE Xplore (Online service)</source><creator>Sadi, Toufik ; Radevici, Ivan ; Kivisaari, Pyry ; Oksanen, Jani</creator><creatorcontrib>Sadi, Toufik ; Radevici, Ivan ; Kivisaari, Pyry ; Oksanen, Jani</creatorcontrib><description>Recent studies of electroluminescent cooling (ELC) in III-V structures demonstrate the need to better understand the factors affecting the efficiency of light emission and energy transport in light-emitting diodes (LEDs). In this paper, we establish the physical and operational requirements for reaching the efficiencies needed for observing ELC in the III-V intracavity double-diode structures at high powers. The experimentally validated modeling framework used in this paper, coupling the drift-diffusion charge transport model with a photon transport model, indicates that the bulk properties of the III-V materials are already sufficient for ELC. Furthermore, the results suggest that the bulk power conversion efficiency of the LED in the devices, which allowed the experimentally measured record high coupling quantum efficiency of 70%, already exceeds 115%. However, as shown here, direct observation of ELC by electrical measurements still requires a combination of a more efficient suppression of the nonradiative surface recombination at the LED walls and the reduction of the detection losses in the photodetector of the intracavity structures.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2018.2885267</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charge transport ; Cooling ; Coupling ; Double-diode structures (DDSs) ; Efficiency ; Electrical measurement ; Electroluminescence ; electroluminescent cooling (ELC) ; Energy conversion efficiency ; III-As ; Light emission ; Light emitting diodes ; light-emitting diodes (LEDs) ; Mathematical model ; Organic light emitting diodes ; Passivation ; Quantum efficiency ; Radiative recombination</subject><ispartof>IEEE transactions on electron devices, 2019-02, Vol.66 (2), p.963-968</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463</citedby><cites>FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463</cites><orcidid>0000-0003-1451-5163 ; 0000-0001-8434-3438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8580415$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sadi, Toufik</creatorcontrib><creatorcontrib>Radevici, Ivan</creatorcontrib><creatorcontrib>Kivisaari, Pyry</creatorcontrib><creatorcontrib>Oksanen, Jani</creatorcontrib><title>Electroluminescent Cooling in III-V Intracavity Diodes: Practical Requirements</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Recent studies of electroluminescent cooling (ELC) in III-V structures demonstrate the need to better understand the factors affecting the efficiency of light emission and energy transport in light-emitting diodes (LEDs). In this paper, we establish the physical and operational requirements for reaching the efficiencies needed for observing ELC in the III-V intracavity double-diode structures at high powers. The experimentally validated modeling framework used in this paper, coupling the drift-diffusion charge transport model with a photon transport model, indicates that the bulk properties of the III-V materials are already sufficient for ELC. Furthermore, the results suggest that the bulk power conversion efficiency of the LED in the devices, which allowed the experimentally measured record high coupling quantum efficiency of 70%, already exceeds 115%. However, as shown here, direct observation of ELC by electrical measurements still requires a combination of a more efficient suppression of the nonradiative surface recombination at the LED walls and the reduction of the detection losses in the photodetector of the intracavity structures.</description><subject>Charge transport</subject><subject>Cooling</subject><subject>Coupling</subject><subject>Double-diode structures (DDSs)</subject><subject>Efficiency</subject><subject>Electrical measurement</subject><subject>Electroluminescence</subject><subject>electroluminescent cooling (ELC)</subject><subject>Energy conversion efficiency</subject><subject>III-As</subject><subject>Light emission</subject><subject>Light emitting diodes</subject><subject>light-emitting diodes (LEDs)</subject><subject>Mathematical model</subject><subject>Organic light emitting diodes</subject><subject>Passivation</subject><subject>Quantum efficiency</subject><subject>Radiative recombination</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wcuC56353sSbtFUXiopUryHNzkrKdrdNdoX-e1NaPA0z87wz8CB0S_CEEKwflvPZhGKiJlQpQWVxhkZEiCLXkstzNMJplWum2CW6inGdWsk5HaG3eQOuD10zbHwL0UHbZ9Oua3z7k_k2K8sy_87Ktg_W2V_f77OZ7yqIj9lHmvTe2Sb7hN3gA2xSNF6ji9o2EW5OdYy-nufL6Wu-eH8pp0-L3DHG-pxIsXK01tqRWqjKaoVloVZEWSgKXVAtNfCitspZple41omxjqtK1ZxVXLIxuj_e3YZuN0DszbobQpteGkqk5hwnKYnCR8qFLsYAtdkGv7Fhbwg2B2smWTMHa-ZkLUXujhEPAP-4EgpzItgfWvVoMQ</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Sadi, Toufik</creator><creator>Radevici, Ivan</creator><creator>Kivisaari, Pyry</creator><creator>Oksanen, Jani</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1451-5163</orcidid><orcidid>https://orcid.org/0000-0001-8434-3438</orcidid></search><sort><creationdate>20190201</creationdate><title>Electroluminescent Cooling in III-V Intracavity Diodes: Practical Requirements</title><author>Sadi, Toufik ; Radevici, Ivan ; Kivisaari, Pyry ; Oksanen, Jani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transport</topic><topic>Cooling</topic><topic>Coupling</topic><topic>Double-diode structures (DDSs)</topic><topic>Efficiency</topic><topic>Electrical measurement</topic><topic>Electroluminescence</topic><topic>electroluminescent cooling (ELC)</topic><topic>Energy conversion efficiency</topic><topic>III-As</topic><topic>Light emission</topic><topic>Light emitting diodes</topic><topic>light-emitting diodes (LEDs)</topic><topic>Mathematical model</topic><topic>Organic light emitting diodes</topic><topic>Passivation</topic><topic>Quantum efficiency</topic><topic>Radiative recombination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadi, Toufik</creatorcontrib><creatorcontrib>Radevici, Ivan</creatorcontrib><creatorcontrib>Kivisaari, Pyry</creatorcontrib><creatorcontrib>Oksanen, Jani</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadi, Toufik</au><au>Radevici, Ivan</au><au>Kivisaari, Pyry</au><au>Oksanen, Jani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroluminescent Cooling in III-V Intracavity Diodes: Practical Requirements</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>66</volume><issue>2</issue><spage>963</spage><epage>968</epage><pages>963-968</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Recent studies of electroluminescent cooling (ELC) in III-V structures demonstrate the need to better understand the factors affecting the efficiency of light emission and energy transport in light-emitting diodes (LEDs). In this paper, we establish the physical and operational requirements for reaching the efficiencies needed for observing ELC in the III-V intracavity double-diode structures at high powers. The experimentally validated modeling framework used in this paper, coupling the drift-diffusion charge transport model with a photon transport model, indicates that the bulk properties of the III-V materials are already sufficient for ELC. Furthermore, the results suggest that the bulk power conversion efficiency of the LED in the devices, which allowed the experimentally measured record high coupling quantum efficiency of 70%, already exceeds 115%. However, as shown here, direct observation of ELC by electrical measurements still requires a combination of a more efficient suppression of the nonradiative surface recombination at the LED walls and the reduction of the detection losses in the photodetector of the intracavity structures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2018.2885267</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1451-5163</orcidid><orcidid>https://orcid.org/0000-0001-8434-3438</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2019-02, Vol.66 (2), p.963-968 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2169440110 |
source | IEEE Xplore (Online service) |
subjects | Charge transport Cooling Coupling Double-diode structures (DDSs) Efficiency Electrical measurement Electroluminescence electroluminescent cooling (ELC) Energy conversion efficiency III-As Light emission Light emitting diodes light-emitting diodes (LEDs) Mathematical model Organic light emitting diodes Passivation Quantum efficiency Radiative recombination |
title | Electroluminescent Cooling in III-V Intracavity Diodes: Practical Requirements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroluminescent%20Cooling%20in%20III-V%20Intracavity%20Diodes:%20Practical%20Requirements&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Sadi,%20Toufik&rft.date=2019-02-01&rft.volume=66&rft.issue=2&rft.spage=963&rft.epage=968&rft.pages=963-968&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2018.2885267&rft_dat=%3Cproquest_cross%3E2169440110%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2169440110&rft_id=info:pmid/&rft_ieee_id=8580415&rfr_iscdi=true |