Loading…

Electroluminescent Cooling in III-V Intracavity Diodes: Practical Requirements

Recent studies of electroluminescent cooling (ELC) in III-V structures demonstrate the need to better understand the factors affecting the efficiency of light emission and energy transport in light-emitting diodes (LEDs). In this paper, we establish the physical and operational requirements for reac...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2019-02, Vol.66 (2), p.963-968
Main Authors: Sadi, Toufik, Radevici, Ivan, Kivisaari, Pyry, Oksanen, Jani
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463
cites cdi_FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463
container_end_page 968
container_issue 2
container_start_page 963
container_title IEEE transactions on electron devices
container_volume 66
creator Sadi, Toufik
Radevici, Ivan
Kivisaari, Pyry
Oksanen, Jani
description Recent studies of electroluminescent cooling (ELC) in III-V structures demonstrate the need to better understand the factors affecting the efficiency of light emission and energy transport in light-emitting diodes (LEDs). In this paper, we establish the physical and operational requirements for reaching the efficiencies needed for observing ELC in the III-V intracavity double-diode structures at high powers. The experimentally validated modeling framework used in this paper, coupling the drift-diffusion charge transport model with a photon transport model, indicates that the bulk properties of the III-V materials are already sufficient for ELC. Furthermore, the results suggest that the bulk power conversion efficiency of the LED in the devices, which allowed the experimentally measured record high coupling quantum efficiency of 70%, already exceeds 115%. However, as shown here, direct observation of ELC by electrical measurements still requires a combination of a more efficient suppression of the nonradiative surface recombination at the LED walls and the reduction of the detection losses in the photodetector of the intracavity structures.
doi_str_mv 10.1109/TED.2018.2885267
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2169440110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8580415</ieee_id><sourcerecordid>2169440110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC56353sSbtFUXiopUryHNzkrKdrdNdoX-e1NaPA0z87wz8CB0S_CEEKwflvPZhGKiJlQpQWVxhkZEiCLXkstzNMJplWum2CW6inGdWsk5HaG3eQOuD10zbHwL0UHbZ9Oua3z7k_k2K8sy_87Ktg_W2V_f77OZ7yqIj9lHmvTe2Sb7hN3gA2xSNF6ji9o2EW5OdYy-nufL6Wu-eH8pp0-L3DHG-pxIsXK01tqRWqjKaoVloVZEWSgKXVAtNfCitspZple41omxjqtK1ZxVXLIxuj_e3YZuN0DszbobQpteGkqk5hwnKYnCR8qFLsYAtdkGv7Fhbwg2B2smWTMHa-ZkLUXujhEPAP-4EgpzItgfWvVoMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169440110</pqid></control><display><type>article</type><title>Electroluminescent Cooling in III-V Intracavity Diodes: Practical Requirements</title><source>IEEE Xplore (Online service)</source><creator>Sadi, Toufik ; Radevici, Ivan ; Kivisaari, Pyry ; Oksanen, Jani</creator><creatorcontrib>Sadi, Toufik ; Radevici, Ivan ; Kivisaari, Pyry ; Oksanen, Jani</creatorcontrib><description>Recent studies of electroluminescent cooling (ELC) in III-V structures demonstrate the need to better understand the factors affecting the efficiency of light emission and energy transport in light-emitting diodes (LEDs). In this paper, we establish the physical and operational requirements for reaching the efficiencies needed for observing ELC in the III-V intracavity double-diode structures at high powers. The experimentally validated modeling framework used in this paper, coupling the drift-diffusion charge transport model with a photon transport model, indicates that the bulk properties of the III-V materials are already sufficient for ELC. Furthermore, the results suggest that the bulk power conversion efficiency of the LED in the devices, which allowed the experimentally measured record high coupling quantum efficiency of 70%, already exceeds 115%. However, as shown here, direct observation of ELC by electrical measurements still requires a combination of a more efficient suppression of the nonradiative surface recombination at the LED walls and the reduction of the detection losses in the photodetector of the intracavity structures.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2018.2885267</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charge transport ; Cooling ; Coupling ; Double-diode structures (DDSs) ; Efficiency ; Electrical measurement ; Electroluminescence ; electroluminescent cooling (ELC) ; Energy conversion efficiency ; III-As ; Light emission ; Light emitting diodes ; light-emitting diodes (LEDs) ; Mathematical model ; Organic light emitting diodes ; Passivation ; Quantum efficiency ; Radiative recombination</subject><ispartof>IEEE transactions on electron devices, 2019-02, Vol.66 (2), p.963-968</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463</citedby><cites>FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463</cites><orcidid>0000-0003-1451-5163 ; 0000-0001-8434-3438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8580415$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sadi, Toufik</creatorcontrib><creatorcontrib>Radevici, Ivan</creatorcontrib><creatorcontrib>Kivisaari, Pyry</creatorcontrib><creatorcontrib>Oksanen, Jani</creatorcontrib><title>Electroluminescent Cooling in III-V Intracavity Diodes: Practical Requirements</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Recent studies of electroluminescent cooling (ELC) in III-V structures demonstrate the need to better understand the factors affecting the efficiency of light emission and energy transport in light-emitting diodes (LEDs). In this paper, we establish the physical and operational requirements for reaching the efficiencies needed for observing ELC in the III-V intracavity double-diode structures at high powers. The experimentally validated modeling framework used in this paper, coupling the drift-diffusion charge transport model with a photon transport model, indicates that the bulk properties of the III-V materials are already sufficient for ELC. Furthermore, the results suggest that the bulk power conversion efficiency of the LED in the devices, which allowed the experimentally measured record high coupling quantum efficiency of 70%, already exceeds 115%. However, as shown here, direct observation of ELC by electrical measurements still requires a combination of a more efficient suppression of the nonradiative surface recombination at the LED walls and the reduction of the detection losses in the photodetector of the intracavity structures.</description><subject>Charge transport</subject><subject>Cooling</subject><subject>Coupling</subject><subject>Double-diode structures (DDSs)</subject><subject>Efficiency</subject><subject>Electrical measurement</subject><subject>Electroluminescence</subject><subject>electroluminescent cooling (ELC)</subject><subject>Energy conversion efficiency</subject><subject>III-As</subject><subject>Light emission</subject><subject>Light emitting diodes</subject><subject>light-emitting diodes (LEDs)</subject><subject>Mathematical model</subject><subject>Organic light emitting diodes</subject><subject>Passivation</subject><subject>Quantum efficiency</subject><subject>Radiative recombination</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wcuC56353sSbtFUXiopUryHNzkrKdrdNdoX-e1NaPA0z87wz8CB0S_CEEKwflvPZhGKiJlQpQWVxhkZEiCLXkstzNMJplWum2CW6inGdWsk5HaG3eQOuD10zbHwL0UHbZ9Oua3z7k_k2K8sy_87Ktg_W2V_f77OZ7yqIj9lHmvTe2Sb7hN3gA2xSNF6ji9o2EW5OdYy-nufL6Wu-eH8pp0-L3DHG-pxIsXK01tqRWqjKaoVloVZEWSgKXVAtNfCitspZple41omxjqtK1ZxVXLIxuj_e3YZuN0DszbobQpteGkqk5hwnKYnCR8qFLsYAtdkGv7Fhbwg2B2smWTMHa-ZkLUXujhEPAP-4EgpzItgfWvVoMQ</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Sadi, Toufik</creator><creator>Radevici, Ivan</creator><creator>Kivisaari, Pyry</creator><creator>Oksanen, Jani</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1451-5163</orcidid><orcidid>https://orcid.org/0000-0001-8434-3438</orcidid></search><sort><creationdate>20190201</creationdate><title>Electroluminescent Cooling in III-V Intracavity Diodes: Practical Requirements</title><author>Sadi, Toufik ; Radevici, Ivan ; Kivisaari, Pyry ; Oksanen, Jani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transport</topic><topic>Cooling</topic><topic>Coupling</topic><topic>Double-diode structures (DDSs)</topic><topic>Efficiency</topic><topic>Electrical measurement</topic><topic>Electroluminescence</topic><topic>electroluminescent cooling (ELC)</topic><topic>Energy conversion efficiency</topic><topic>III-As</topic><topic>Light emission</topic><topic>Light emitting diodes</topic><topic>light-emitting diodes (LEDs)</topic><topic>Mathematical model</topic><topic>Organic light emitting diodes</topic><topic>Passivation</topic><topic>Quantum efficiency</topic><topic>Radiative recombination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadi, Toufik</creatorcontrib><creatorcontrib>Radevici, Ivan</creatorcontrib><creatorcontrib>Kivisaari, Pyry</creatorcontrib><creatorcontrib>Oksanen, Jani</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadi, Toufik</au><au>Radevici, Ivan</au><au>Kivisaari, Pyry</au><au>Oksanen, Jani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroluminescent Cooling in III-V Intracavity Diodes: Practical Requirements</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>66</volume><issue>2</issue><spage>963</spage><epage>968</epage><pages>963-968</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Recent studies of electroluminescent cooling (ELC) in III-V structures demonstrate the need to better understand the factors affecting the efficiency of light emission and energy transport in light-emitting diodes (LEDs). In this paper, we establish the physical and operational requirements for reaching the efficiencies needed for observing ELC in the III-V intracavity double-diode structures at high powers. The experimentally validated modeling framework used in this paper, coupling the drift-diffusion charge transport model with a photon transport model, indicates that the bulk properties of the III-V materials are already sufficient for ELC. Furthermore, the results suggest that the bulk power conversion efficiency of the LED in the devices, which allowed the experimentally measured record high coupling quantum efficiency of 70%, already exceeds 115%. However, as shown here, direct observation of ELC by electrical measurements still requires a combination of a more efficient suppression of the nonradiative surface recombination at the LED walls and the reduction of the detection losses in the photodetector of the intracavity structures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2018.2885267</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1451-5163</orcidid><orcidid>https://orcid.org/0000-0001-8434-3438</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2019-02, Vol.66 (2), p.963-968
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2169440110
source IEEE Xplore (Online service)
subjects Charge transport
Cooling
Coupling
Double-diode structures (DDSs)
Efficiency
Electrical measurement
Electroluminescence
electroluminescent cooling (ELC)
Energy conversion efficiency
III-As
Light emission
Light emitting diodes
light-emitting diodes (LEDs)
Mathematical model
Organic light emitting diodes
Passivation
Quantum efficiency
Radiative recombination
title Electroluminescent Cooling in III-V Intracavity Diodes: Practical Requirements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroluminescent%20Cooling%20in%20III-V%20Intracavity%20Diodes:%20Practical%20Requirements&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Sadi,%20Toufik&rft.date=2019-02-01&rft.volume=66&rft.issue=2&rft.spage=963&rft.epage=968&rft.pages=963-968&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2018.2885267&rft_dat=%3Cproquest_cross%3E2169440110%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-165bc2f99c1f58da980678b18ae77972969e47fa8ca39b0f98daac48d8f43d463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2169440110&rft_id=info:pmid/&rft_ieee_id=8580415&rfr_iscdi=true