Loading…

A 232-1996-kS/s Robust Compressive Sensing Reconstruction Engine for Real-Time Physiological Signals Monitoring

Compressive sensing (CS) techniques enable new reduced-complexity designs for sensor nodes and help reduce overall transmission power in wireless sensor network. However, for real-time physiological signals monitoring, the orthogonal matching pursuit that applied prior CS reconstruction chip designs...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of solid-state circuits 2019-01, Vol.54 (1), p.307-317
Main Authors: Chen, Ting-Sheng, Kuo, Hung-Chi, Wu, An-Yeu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673
cites cdi_FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673
container_end_page 317
container_issue 1
container_start_page 307
container_title IEEE journal of solid-state circuits
container_volume 54
creator Chen, Ting-Sheng
Kuo, Hung-Chi
Wu, An-Yeu
description Compressive sensing (CS) techniques enable new reduced-complexity designs for sensor nodes and help reduce overall transmission power in wireless sensor network. However, for real-time physiological signals monitoring, the orthogonal matching pursuit that applied prior CS reconstruction chip designs is sensitive to measurement noise and suffers from a low convergence rate. In this paper, we present a robust 232-1996-kS/s CS reconstruction engine fabricated in 40-nm CMOS. With combination sparsity estimation (SE) and robust subspace pursuit (SP), more than 8-dB signal-to-noise ratio (SNR) gain is achieved under the same success rate for robust reconstruction. For hardware implementation, a flexible indices-updating VLSI architecture inspired by the gradient descent method can support arbitrary signal dimension of CS reconstruction without matrix decomposition. Parallel searching, indices bypassing, and processing elements (PEs) grouping are designed to reduce the total CS reconstruction cycle latency, thus enhancing the throughput rate by approximately 6.3 for CS reconstruction. The 8.66-mm CS reconstruction engine can provide real-time physiological signal reconstruction for data collected from CS-based wireless biosensors under noisy conditions, making low-power patient monitoring a reality.
doi_str_mv 10.1109/JSSC.2018.2869887
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2169456930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8480106</ieee_id><sourcerecordid>2169456930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NwtN03S5HGU-Y-Jsk7wrXRpWjO7ZiatsG9vx4ZPl3vPOZd7fwjdApkAEDV9ybJ0QgnICZVCSZmcoRFwLiNI4s9zNCKDFClKyCW6CmEztIxJGCE3wzSmESglou9sGvDSrfvQ4dRtd96EYH8NzkwbbFvjpdGuDZ3vdWddi-dtbVuDK-cHpWiild0a_P61D9Y1rra6aHBm67ZoAn51re2cH5Zco4tqmJibUx2jj4f5Kn2KFm-Pz-lsEemYQRcpTVgCBlhRKqiEjitWCl5omSguOFC2NpyT9fBEXJbKqLIsiQRaam6koiKJx-j-uHfn3U9vQpdvXO8Px-QUhGJcqJgMLji6tHcheFPlO2-3hd_nQPID1_zANT9wzU9ch8zdMWONMf9-ySQBIuI_CXdzXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169456930</pqid></control><display><type>article</type><title>A 232-1996-kS/s Robust Compressive Sensing Reconstruction Engine for Real-Time Physiological Signals Monitoring</title><source>IEEE Xplore (Online service)</source><creator>Chen, Ting-Sheng ; Kuo, Hung-Chi ; Wu, An-Yeu</creator><creatorcontrib>Chen, Ting-Sheng ; Kuo, Hung-Chi ; Wu, An-Yeu</creatorcontrib><description>Compressive sensing (CS) techniques enable new reduced-complexity designs for sensor nodes and help reduce overall transmission power in wireless sensor network. However, for real-time physiological signals monitoring, the orthogonal matching pursuit that applied prior CS reconstruction chip designs is sensitive to measurement noise and suffers from a low convergence rate. In this paper, we present a robust 232-1996-kS/s CS reconstruction engine fabricated in 40-nm CMOS. With combination sparsity estimation (SE) and robust subspace pursuit (SP), more than 8-dB signal-to-noise ratio (SNR) gain is achieved under the same success rate for robust reconstruction. For hardware implementation, a flexible indices-updating VLSI architecture inspired by the gradient descent method can support arbitrary signal dimension of CS reconstruction without matrix decomposition. Parallel searching, indices bypassing, and processing elements (PEs) grouping are designed to reduce the total CS reconstruction cycle latency, thus enhancing the throughput rate by approximately 6.3 for CS reconstruction. The 8.66-mm CS reconstruction engine can provide real-time physiological signal reconstruction for data collected from CS-based wireless biosensors under noisy conditions, making low-power patient monitoring a reality.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2018.2869887</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical signal processing ; Biosensors ; CMOS ; compressed sensing ; Engines ; Integrated circuits ; Length measurement ; multiple atom search ; Noise levels ; Noise measurement ; Noise sensitivity ; Physiology ; Real time ; Real-time systems ; reconfigurable architecture ; Reconstruction algorithms ; Remote sensors ; Robustness ; Semiconductor device measurement ; Signal monitoring ; Signal reconstruction ; Time compression ; Upgrading ; Very large scale integration ; Wireless sensor networks</subject><ispartof>IEEE journal of solid-state circuits, 2019-01, Vol.54 (1), p.307-317</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673</citedby><cites>FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673</cites><orcidid>0000-0002-4467-4045 ; 0000-0003-0456-9790 ; 0000-0003-4731-8633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8480106$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chen, Ting-Sheng</creatorcontrib><creatorcontrib>Kuo, Hung-Chi</creatorcontrib><creatorcontrib>Wu, An-Yeu</creatorcontrib><title>A 232-1996-kS/s Robust Compressive Sensing Reconstruction Engine for Real-Time Physiological Signals Monitoring</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Compressive sensing (CS) techniques enable new reduced-complexity designs for sensor nodes and help reduce overall transmission power in wireless sensor network. However, for real-time physiological signals monitoring, the orthogonal matching pursuit that applied prior CS reconstruction chip designs is sensitive to measurement noise and suffers from a low convergence rate. In this paper, we present a robust 232-1996-kS/s CS reconstruction engine fabricated in 40-nm CMOS. With combination sparsity estimation (SE) and robust subspace pursuit (SP), more than 8-dB signal-to-noise ratio (SNR) gain is achieved under the same success rate for robust reconstruction. For hardware implementation, a flexible indices-updating VLSI architecture inspired by the gradient descent method can support arbitrary signal dimension of CS reconstruction without matrix decomposition. Parallel searching, indices bypassing, and processing elements (PEs) grouping are designed to reduce the total CS reconstruction cycle latency, thus enhancing the throughput rate by approximately 6.3 for CS reconstruction. The 8.66-mm CS reconstruction engine can provide real-time physiological signal reconstruction for data collected from CS-based wireless biosensors under noisy conditions, making low-power patient monitoring a reality.</description><subject>Biomedical signal processing</subject><subject>Biosensors</subject><subject>CMOS</subject><subject>compressed sensing</subject><subject>Engines</subject><subject>Integrated circuits</subject><subject>Length measurement</subject><subject>multiple atom search</subject><subject>Noise levels</subject><subject>Noise measurement</subject><subject>Noise sensitivity</subject><subject>Physiology</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>reconfigurable architecture</subject><subject>Reconstruction algorithms</subject><subject>Remote sensors</subject><subject>Robustness</subject><subject>Semiconductor device measurement</subject><subject>Signal monitoring</subject><subject>Signal reconstruction</subject><subject>Time compression</subject><subject>Upgrading</subject><subject>Very large scale integration</subject><subject>Wireless sensor networks</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NwtN03S5HGU-Y-Jsk7wrXRpWjO7ZiatsG9vx4ZPl3vPOZd7fwjdApkAEDV9ybJ0QgnICZVCSZmcoRFwLiNI4s9zNCKDFClKyCW6CmEztIxJGCE3wzSmESglou9sGvDSrfvQ4dRtd96EYH8NzkwbbFvjpdGuDZ3vdWddi-dtbVuDK-cHpWiild0a_P61D9Y1rra6aHBm67ZoAn51re2cH5Zco4tqmJibUx2jj4f5Kn2KFm-Pz-lsEemYQRcpTVgCBlhRKqiEjitWCl5omSguOFC2NpyT9fBEXJbKqLIsiQRaam6koiKJx-j-uHfn3U9vQpdvXO8Px-QUhGJcqJgMLji6tHcheFPlO2-3hd_nQPID1_zANT9wzU9ch8zdMWONMf9-ySQBIuI_CXdzXQ</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Chen, Ting-Sheng</creator><creator>Kuo, Hung-Chi</creator><creator>Wu, An-Yeu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4467-4045</orcidid><orcidid>https://orcid.org/0000-0003-0456-9790</orcidid><orcidid>https://orcid.org/0000-0003-4731-8633</orcidid></search><sort><creationdate>201901</creationdate><title>A 232-1996-kS/s Robust Compressive Sensing Reconstruction Engine for Real-Time Physiological Signals Monitoring</title><author>Chen, Ting-Sheng ; Kuo, Hung-Chi ; Wu, An-Yeu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical signal processing</topic><topic>Biosensors</topic><topic>CMOS</topic><topic>compressed sensing</topic><topic>Engines</topic><topic>Integrated circuits</topic><topic>Length measurement</topic><topic>multiple atom search</topic><topic>Noise levels</topic><topic>Noise measurement</topic><topic>Noise sensitivity</topic><topic>Physiology</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>reconfigurable architecture</topic><topic>Reconstruction algorithms</topic><topic>Remote sensors</topic><topic>Robustness</topic><topic>Semiconductor device measurement</topic><topic>Signal monitoring</topic><topic>Signal reconstruction</topic><topic>Time compression</topic><topic>Upgrading</topic><topic>Very large scale integration</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ting-Sheng</creatorcontrib><creatorcontrib>Kuo, Hung-Chi</creatorcontrib><creatorcontrib>Wu, An-Yeu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ting-Sheng</au><au>Kuo, Hung-Chi</au><au>Wu, An-Yeu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 232-1996-kS/s Robust Compressive Sensing Reconstruction Engine for Real-Time Physiological Signals Monitoring</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2019-01</date><risdate>2019</risdate><volume>54</volume><issue>1</issue><spage>307</spage><epage>317</epage><pages>307-317</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Compressive sensing (CS) techniques enable new reduced-complexity designs for sensor nodes and help reduce overall transmission power in wireless sensor network. However, for real-time physiological signals monitoring, the orthogonal matching pursuit that applied prior CS reconstruction chip designs is sensitive to measurement noise and suffers from a low convergence rate. In this paper, we present a robust 232-1996-kS/s CS reconstruction engine fabricated in 40-nm CMOS. With combination sparsity estimation (SE) and robust subspace pursuit (SP), more than 8-dB signal-to-noise ratio (SNR) gain is achieved under the same success rate for robust reconstruction. For hardware implementation, a flexible indices-updating VLSI architecture inspired by the gradient descent method can support arbitrary signal dimension of CS reconstruction without matrix decomposition. Parallel searching, indices bypassing, and processing elements (PEs) grouping are designed to reduce the total CS reconstruction cycle latency, thus enhancing the throughput rate by approximately 6.3 for CS reconstruction. The 8.66-mm CS reconstruction engine can provide real-time physiological signal reconstruction for data collected from CS-based wireless biosensors under noisy conditions, making low-power patient monitoring a reality.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2018.2869887</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4467-4045</orcidid><orcidid>https://orcid.org/0000-0003-0456-9790</orcidid><orcidid>https://orcid.org/0000-0003-4731-8633</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2019-01, Vol.54 (1), p.307-317
issn 0018-9200
1558-173X
language eng
recordid cdi_proquest_journals_2169456930
source IEEE Xplore (Online service)
subjects Biomedical signal processing
Biosensors
CMOS
compressed sensing
Engines
Integrated circuits
Length measurement
multiple atom search
Noise levels
Noise measurement
Noise sensitivity
Physiology
Real time
Real-time systems
reconfigurable architecture
Reconstruction algorithms
Remote sensors
Robustness
Semiconductor device measurement
Signal monitoring
Signal reconstruction
Time compression
Upgrading
Very large scale integration
Wireless sensor networks
title A 232-1996-kS/s Robust Compressive Sensing Reconstruction Engine for Real-Time Physiological Signals Monitoring
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20232-1996-kS/s%20Robust%20Compressive%20Sensing%20Reconstruction%20Engine%20for%20Real-Time%20Physiological%20Signals%20Monitoring&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Chen,%20Ting-Sheng&rft.date=2019-01&rft.volume=54&rft.issue=1&rft.spage=307&rft.epage=317&rft.pages=307-317&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2018.2869887&rft_dat=%3Cproquest_ieee_%3E2169456930%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2169456930&rft_id=info:pmid/&rft_ieee_id=8480106&rfr_iscdi=true