Loading…
A 232-1996-kS/s Robust Compressive Sensing Reconstruction Engine for Real-Time Physiological Signals Monitoring
Compressive sensing (CS) techniques enable new reduced-complexity designs for sensor nodes and help reduce overall transmission power in wireless sensor network. However, for real-time physiological signals monitoring, the orthogonal matching pursuit that applied prior CS reconstruction chip designs...
Saved in:
Published in: | IEEE journal of solid-state circuits 2019-01, Vol.54 (1), p.307-317 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673 |
---|---|
cites | cdi_FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673 |
container_end_page | 317 |
container_issue | 1 |
container_start_page | 307 |
container_title | IEEE journal of solid-state circuits |
container_volume | 54 |
creator | Chen, Ting-Sheng Kuo, Hung-Chi Wu, An-Yeu |
description | Compressive sensing (CS) techniques enable new reduced-complexity designs for sensor nodes and help reduce overall transmission power in wireless sensor network. However, for real-time physiological signals monitoring, the orthogonal matching pursuit that applied prior CS reconstruction chip designs is sensitive to measurement noise and suffers from a low convergence rate. In this paper, we present a robust 232-1996-kS/s CS reconstruction engine fabricated in 40-nm CMOS. With combination sparsity estimation (SE) and robust subspace pursuit (SP), more than 8-dB signal-to-noise ratio (SNR) gain is achieved under the same success rate for robust reconstruction. For hardware implementation, a flexible indices-updating VLSI architecture inspired by the gradient descent method can support arbitrary signal dimension of CS reconstruction without matrix decomposition. Parallel searching, indices bypassing, and processing elements (PEs) grouping are designed to reduce the total CS reconstruction cycle latency, thus enhancing the throughput rate by approximately 6.3 for CS reconstruction. The 8.66-mm CS reconstruction engine can provide real-time physiological signal reconstruction for data collected from CS-based wireless biosensors under noisy conditions, making low-power patient monitoring a reality. |
doi_str_mv | 10.1109/JSSC.2018.2869887 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2169456930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8480106</ieee_id><sourcerecordid>2169456930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NwtN03S5HGU-Y-Jsk7wrXRpWjO7ZiatsG9vx4ZPl3vPOZd7fwjdApkAEDV9ybJ0QgnICZVCSZmcoRFwLiNI4s9zNCKDFClKyCW6CmEztIxJGCE3wzSmESglou9sGvDSrfvQ4dRtd96EYH8NzkwbbFvjpdGuDZ3vdWddi-dtbVuDK-cHpWiild0a_P61D9Y1rra6aHBm67ZoAn51re2cH5Zco4tqmJibUx2jj4f5Kn2KFm-Pz-lsEemYQRcpTVgCBlhRKqiEjitWCl5omSguOFC2NpyT9fBEXJbKqLIsiQRaam6koiKJx-j-uHfn3U9vQpdvXO8Px-QUhGJcqJgMLji6tHcheFPlO2-3hd_nQPID1_zANT9wzU9ch8zdMWONMf9-ySQBIuI_CXdzXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169456930</pqid></control><display><type>article</type><title>A 232-1996-kS/s Robust Compressive Sensing Reconstruction Engine for Real-Time Physiological Signals Monitoring</title><source>IEEE Xplore (Online service)</source><creator>Chen, Ting-Sheng ; Kuo, Hung-Chi ; Wu, An-Yeu</creator><creatorcontrib>Chen, Ting-Sheng ; Kuo, Hung-Chi ; Wu, An-Yeu</creatorcontrib><description>Compressive sensing (CS) techniques enable new reduced-complexity designs for sensor nodes and help reduce overall transmission power in wireless sensor network. However, for real-time physiological signals monitoring, the orthogonal matching pursuit that applied prior CS reconstruction chip designs is sensitive to measurement noise and suffers from a low convergence rate. In this paper, we present a robust 232-1996-kS/s CS reconstruction engine fabricated in 40-nm CMOS. With combination sparsity estimation (SE) and robust subspace pursuit (SP), more than 8-dB signal-to-noise ratio (SNR) gain is achieved under the same success rate for robust reconstruction. For hardware implementation, a flexible indices-updating VLSI architecture inspired by the gradient descent method can support arbitrary signal dimension of CS reconstruction without matrix decomposition. Parallel searching, indices bypassing, and processing elements (PEs) grouping are designed to reduce the total CS reconstruction cycle latency, thus enhancing the throughput rate by approximately 6.3 for CS reconstruction. The 8.66-mm CS reconstruction engine can provide real-time physiological signal reconstruction for data collected from CS-based wireless biosensors under noisy conditions, making low-power patient monitoring a reality.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2018.2869887</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical signal processing ; Biosensors ; CMOS ; compressed sensing ; Engines ; Integrated circuits ; Length measurement ; multiple atom search ; Noise levels ; Noise measurement ; Noise sensitivity ; Physiology ; Real time ; Real-time systems ; reconfigurable architecture ; Reconstruction algorithms ; Remote sensors ; Robustness ; Semiconductor device measurement ; Signal monitoring ; Signal reconstruction ; Time compression ; Upgrading ; Very large scale integration ; Wireless sensor networks</subject><ispartof>IEEE journal of solid-state circuits, 2019-01, Vol.54 (1), p.307-317</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673</citedby><cites>FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673</cites><orcidid>0000-0002-4467-4045 ; 0000-0003-0456-9790 ; 0000-0003-4731-8633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8480106$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chen, Ting-Sheng</creatorcontrib><creatorcontrib>Kuo, Hung-Chi</creatorcontrib><creatorcontrib>Wu, An-Yeu</creatorcontrib><title>A 232-1996-kS/s Robust Compressive Sensing Reconstruction Engine for Real-Time Physiological Signals Monitoring</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Compressive sensing (CS) techniques enable new reduced-complexity designs for sensor nodes and help reduce overall transmission power in wireless sensor network. However, for real-time physiological signals monitoring, the orthogonal matching pursuit that applied prior CS reconstruction chip designs is sensitive to measurement noise and suffers from a low convergence rate. In this paper, we present a robust 232-1996-kS/s CS reconstruction engine fabricated in 40-nm CMOS. With combination sparsity estimation (SE) and robust subspace pursuit (SP), more than 8-dB signal-to-noise ratio (SNR) gain is achieved under the same success rate for robust reconstruction. For hardware implementation, a flexible indices-updating VLSI architecture inspired by the gradient descent method can support arbitrary signal dimension of CS reconstruction without matrix decomposition. Parallel searching, indices bypassing, and processing elements (PEs) grouping are designed to reduce the total CS reconstruction cycle latency, thus enhancing the throughput rate by approximately 6.3 for CS reconstruction. The 8.66-mm CS reconstruction engine can provide real-time physiological signal reconstruction for data collected from CS-based wireless biosensors under noisy conditions, making low-power patient monitoring a reality.</description><subject>Biomedical signal processing</subject><subject>Biosensors</subject><subject>CMOS</subject><subject>compressed sensing</subject><subject>Engines</subject><subject>Integrated circuits</subject><subject>Length measurement</subject><subject>multiple atom search</subject><subject>Noise levels</subject><subject>Noise measurement</subject><subject>Noise sensitivity</subject><subject>Physiology</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>reconfigurable architecture</subject><subject>Reconstruction algorithms</subject><subject>Remote sensors</subject><subject>Robustness</subject><subject>Semiconductor device measurement</subject><subject>Signal monitoring</subject><subject>Signal reconstruction</subject><subject>Time compression</subject><subject>Upgrading</subject><subject>Very large scale integration</subject><subject>Wireless sensor networks</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NwtN03S5HGU-Y-Jsk7wrXRpWjO7ZiatsG9vx4ZPl3vPOZd7fwjdApkAEDV9ybJ0QgnICZVCSZmcoRFwLiNI4s9zNCKDFClKyCW6CmEztIxJGCE3wzSmESglou9sGvDSrfvQ4dRtd96EYH8NzkwbbFvjpdGuDZ3vdWddi-dtbVuDK-cHpWiild0a_P61D9Y1rra6aHBm67ZoAn51re2cH5Zco4tqmJibUx2jj4f5Kn2KFm-Pz-lsEemYQRcpTVgCBlhRKqiEjitWCl5omSguOFC2NpyT9fBEXJbKqLIsiQRaam6koiKJx-j-uHfn3U9vQpdvXO8Px-QUhGJcqJgMLji6tHcheFPlO2-3hd_nQPID1_zANT9wzU9ch8zdMWONMf9-ySQBIuI_CXdzXQ</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Chen, Ting-Sheng</creator><creator>Kuo, Hung-Chi</creator><creator>Wu, An-Yeu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4467-4045</orcidid><orcidid>https://orcid.org/0000-0003-0456-9790</orcidid><orcidid>https://orcid.org/0000-0003-4731-8633</orcidid></search><sort><creationdate>201901</creationdate><title>A 232-1996-kS/s Robust Compressive Sensing Reconstruction Engine for Real-Time Physiological Signals Monitoring</title><author>Chen, Ting-Sheng ; Kuo, Hung-Chi ; Wu, An-Yeu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical signal processing</topic><topic>Biosensors</topic><topic>CMOS</topic><topic>compressed sensing</topic><topic>Engines</topic><topic>Integrated circuits</topic><topic>Length measurement</topic><topic>multiple atom search</topic><topic>Noise levels</topic><topic>Noise measurement</topic><topic>Noise sensitivity</topic><topic>Physiology</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>reconfigurable architecture</topic><topic>Reconstruction algorithms</topic><topic>Remote sensors</topic><topic>Robustness</topic><topic>Semiconductor device measurement</topic><topic>Signal monitoring</topic><topic>Signal reconstruction</topic><topic>Time compression</topic><topic>Upgrading</topic><topic>Very large scale integration</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ting-Sheng</creatorcontrib><creatorcontrib>Kuo, Hung-Chi</creatorcontrib><creatorcontrib>Wu, An-Yeu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ting-Sheng</au><au>Kuo, Hung-Chi</au><au>Wu, An-Yeu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 232-1996-kS/s Robust Compressive Sensing Reconstruction Engine for Real-Time Physiological Signals Monitoring</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2019-01</date><risdate>2019</risdate><volume>54</volume><issue>1</issue><spage>307</spage><epage>317</epage><pages>307-317</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Compressive sensing (CS) techniques enable new reduced-complexity designs for sensor nodes and help reduce overall transmission power in wireless sensor network. However, for real-time physiological signals monitoring, the orthogonal matching pursuit that applied prior CS reconstruction chip designs is sensitive to measurement noise and suffers from a low convergence rate. In this paper, we present a robust 232-1996-kS/s CS reconstruction engine fabricated in 40-nm CMOS. With combination sparsity estimation (SE) and robust subspace pursuit (SP), more than 8-dB signal-to-noise ratio (SNR) gain is achieved under the same success rate for robust reconstruction. For hardware implementation, a flexible indices-updating VLSI architecture inspired by the gradient descent method can support arbitrary signal dimension of CS reconstruction without matrix decomposition. Parallel searching, indices bypassing, and processing elements (PEs) grouping are designed to reduce the total CS reconstruction cycle latency, thus enhancing the throughput rate by approximately 6.3 for CS reconstruction. The 8.66-mm CS reconstruction engine can provide real-time physiological signal reconstruction for data collected from CS-based wireless biosensors under noisy conditions, making low-power patient monitoring a reality.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2018.2869887</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4467-4045</orcidid><orcidid>https://orcid.org/0000-0003-0456-9790</orcidid><orcidid>https://orcid.org/0000-0003-4731-8633</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2019-01, Vol.54 (1), p.307-317 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_journals_2169456930 |
source | IEEE Xplore (Online service) |
subjects | Biomedical signal processing Biosensors CMOS compressed sensing Engines Integrated circuits Length measurement multiple atom search Noise levels Noise measurement Noise sensitivity Physiology Real time Real-time systems reconfigurable architecture Reconstruction algorithms Remote sensors Robustness Semiconductor device measurement Signal monitoring Signal reconstruction Time compression Upgrading Very large scale integration Wireless sensor networks |
title | A 232-1996-kS/s Robust Compressive Sensing Reconstruction Engine for Real-Time Physiological Signals Monitoring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20232-1996-kS/s%20Robust%20Compressive%20Sensing%20Reconstruction%20Engine%20for%20Real-Time%20Physiological%20Signals%20Monitoring&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Chen,%20Ting-Sheng&rft.date=2019-01&rft.volume=54&rft.issue=1&rft.spage=307&rft.epage=317&rft.pages=307-317&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2018.2869887&rft_dat=%3Cproquest_ieee_%3E2169456930%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-9c0471e14ad91f6c3f4d65ac879565124be550b1443dd9e9ddd0812dc5e892673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2169456930&rft_id=info:pmid/&rft_ieee_id=8480106&rfr_iscdi=true |