Loading…
Temporal and Spatial Correspondence of Pc1/EMIC Waves and Relativistic Electron Precipitations Observed With Ground‐Based Multi‐Instruments on 27 March 2017
Electromagnetic ion cyclotron (EMIC) waves potentially cause precipitation loss of relativistic electrons from the outer radiation belt to the atmosphere through pitch angle scattering. However, the direct evidence of each EMIC wave element and burst of precipitation has not yet been reported. Here...
Saved in:
Published in: | Geophysical research letters 2018-12, Vol.45 (24), p.13,182-13,191 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3885-3fda57ef5e176296278b159406c2245aa3fa122029f3554cc0223bcde7a6b4413 |
---|---|
cites | cdi_FETCH-LOGICAL-c3885-3fda57ef5e176296278b159406c2245aa3fa122029f3554cc0223bcde7a6b4413 |
container_end_page | 13,191 |
container_issue | 24 |
container_start_page | 13,182 |
container_title | Geophysical research letters |
container_volume | 45 |
creator | Hirai, A. Tsuchiya, F. Obara, T. Kasaba, Y. Katoh, Y. Misawa, H. Shiokawa, K. Miyoshi, Y. Kurita, S. Matsuda, S. Connors, M. Nagatsuma, T. Sakaguchi, K. Kasahara, Y. Kumamoto, A. Matsuoka, A. Shoji, M. Shinohara, I. Albert, J. M. |
description | Electromagnetic ion cyclotron (EMIC) waves potentially cause precipitation loss of relativistic electrons from the outer radiation belt to the atmosphere through pitch angle scattering. However, the direct evidence of each EMIC wave element and burst of precipitation has not yet been reported. Here we show the temporal and spatial correspondence of the EMIC waves with relativistic electron precipitation (REP) during the geomagnetic storm of 27 March 2017. EMIC waves were observed at several stations in North America. REP was detected as a decrease of subionospheric radio amplitudes observed at Athabasca, Canada. When isolated proton aurora, observed at Athabasca, appeared on the radio propagation path, we found a good correspondence between the temporal variations of REP and EMIC waves, and REP preceded EMIC waves by 24 s. This time lag is consistent with the travel time difference between relativistic electrons and EMIC waves from the magnetospheric equatorial plane to the ionosphere.
Plain Language Summary
The flux of relativistic electrons in the outer radiation belt can vary in a time scale of hours to days during magnetically disturbed condition. One of the loss mechanisms of relativistic electrons is precipitation into the atmosphere due to interaction between electrons and plasma waves in the magnetosphere. Electromagnetic ion cyclotron waves, which are excited in the magnetosphere, are effective for causing precipitation loss of relativistic electrons. These waves can have rising spectral structure with an increase in frequency quasiperiodically. In this study, we made use of multiple ground‐based observations and confirmed where and when relativistic electrons precipitated due to scattering by these waves. For the first time, we found direct evidence of correspondence between each wave element with rising tone and each burst of electron precipitation. We suggest that the precipitation of relativistic electrons occurred when the intensity of waves increased in the period of a few tens of seconds to minutes.
Key Points
Relativistic electron precipitation and electromagnetic ion cyclotron waves were observed during the main phase of a geomagnetic storm
Isolated proton auroras appeared on the radio propagation paths on which relativistic electron precipitation was detected
We found a good correspondence between the time variations of relativistic electron precipitation and electromagnetic ion cyclotron waves |
doi_str_mv | 10.1029/2018GL080126 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2169583438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169583438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-3fda57ef5e176296278b159406c2245aa3fa122029f3554cc0223bcde7a6b4413</originalsourceid><addsrcrecordid>eNp9kUlOAzEQRS0EEmHYcQBLbAl4aPewhCiESImCGJRly3FXK446dmO7g7LjCByBs3ESDGHBilVNT79U9RE6o-SSElZcMULz0YTkhLJ0D_VokST9nJBsH_UIKWLOsvQQHXm_IoRwwmkPfTzBurVONliaCj-2MuiYD6xz4FtrKjAKsK3xvaJXw-l4gOdyA_4HfoAm0hvtg1Z42IAKzhp870DpVoc4ssbj2cKD20CF5zos8cjZzlSfb-830sfetGuCjtXY-OC6NZjgcZRgGZ5Kp5Y43pOdoINaNh5Of-Mxer4dPg3u-pPZaDy4nvQVz3PR53UlRQa1AJqlrEhZli-oKBKSKsYSISWvJWUsfqnmQiRKEcb4QlWQyXSRJJQfo_OdbuvsSwc-lCvbORNXloymhch5wvNIXewo5az3DuqydXot3bakpPz2oPzrQcTZDn_VDWz_ZcvRwyQuYYJ_AcVWiWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169583438</pqid></control><display><type>article</type><title>Temporal and Spatial Correspondence of Pc1/EMIC Waves and Relativistic Electron Precipitations Observed With Ground‐Based Multi‐Instruments on 27 March 2017</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Hirai, A. ; Tsuchiya, F. ; Obara, T. ; Kasaba, Y. ; Katoh, Y. ; Misawa, H. ; Shiokawa, K. ; Miyoshi, Y. ; Kurita, S. ; Matsuda, S. ; Connors, M. ; Nagatsuma, T. ; Sakaguchi, K. ; Kasahara, Y. ; Kumamoto, A. ; Matsuoka, A. ; Shoji, M. ; Shinohara, I. ; Albert, J. M.</creator><creatorcontrib>Hirai, A. ; Tsuchiya, F. ; Obara, T. ; Kasaba, Y. ; Katoh, Y. ; Misawa, H. ; Shiokawa, K. ; Miyoshi, Y. ; Kurita, S. ; Matsuda, S. ; Connors, M. ; Nagatsuma, T. ; Sakaguchi, K. ; Kasahara, Y. ; Kumamoto, A. ; Matsuoka, A. ; Shoji, M. ; Shinohara, I. ; Albert, J. M.</creatorcontrib><description>Electromagnetic ion cyclotron (EMIC) waves potentially cause precipitation loss of relativistic electrons from the outer radiation belt to the atmosphere through pitch angle scattering. However, the direct evidence of each EMIC wave element and burst of precipitation has not yet been reported. Here we show the temporal and spatial correspondence of the EMIC waves with relativistic electron precipitation (REP) during the geomagnetic storm of 27 March 2017. EMIC waves were observed at several stations in North America. REP was detected as a decrease of subionospheric radio amplitudes observed at Athabasca, Canada. When isolated proton aurora, observed at Athabasca, appeared on the radio propagation path, we found a good correspondence between the temporal variations of REP and EMIC waves, and REP preceded EMIC waves by 24 s. This time lag is consistent with the travel time difference between relativistic electrons and EMIC waves from the magnetospheric equatorial plane to the ionosphere.
Plain Language Summary
The flux of relativistic electrons in the outer radiation belt can vary in a time scale of hours to days during magnetically disturbed condition. One of the loss mechanisms of relativistic electrons is precipitation into the atmosphere due to interaction between electrons and plasma waves in the magnetosphere. Electromagnetic ion cyclotron waves, which are excited in the magnetosphere, are effective for causing precipitation loss of relativistic electrons. These waves can have rising spectral structure with an increase in frequency quasiperiodically. In this study, we made use of multiple ground‐based observations and confirmed where and when relativistic electrons precipitated due to scattering by these waves. For the first time, we found direct evidence of correspondence between each wave element with rising tone and each burst of electron precipitation. We suggest that the precipitation of relativistic electrons occurred when the intensity of waves increased in the period of a few tens of seconds to minutes.
Key Points
Relativistic electron precipitation and electromagnetic ion cyclotron waves were observed during the main phase of a geomagnetic storm
Isolated proton auroras appeared on the radio propagation paths on which relativistic electron precipitation was detected
We found a good correspondence between the time variations of relativistic electron precipitation and electromagnetic ion cyclotron waves</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL080126</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Atmosphere ; Cyclotrons ; Electron precipitation ; Electrons ; EMIC waves ; energetic electron precipitation ; Geomagnetic storms ; Geomagnetism ; Ground-based observation ; Instruments ; Ion cyclotron waves ; Ionosphere ; Jupiter ; Magnetic storms ; Magnetosphere ; Magnetospheres ; Outer radiation belt ; Pitch ; Pitch (inclination) ; Plasma waves ; Radiation ; Radio ; Relativism ; Relativistic effects ; Scattering ; Storms ; subionosheric propagation ; Temporal variations ; Time lag ; Travel time ; Waves</subject><ispartof>Geophysical research letters, 2018-12, Vol.45 (24), p.13,182-13,191</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-3fda57ef5e176296278b159406c2245aa3fa122029f3554cc0223bcde7a6b4413</citedby><cites>FETCH-LOGICAL-c3885-3fda57ef5e176296278b159406c2245aa3fa122029f3554cc0223bcde7a6b4413</cites><orcidid>0000-0002-4318-0633 ; 0000-0002-3988-1488 ; 0000-0002-1553-9557 ; 0000-0002-8160-3553 ; 0000-0003-1167-533X ; 0000-0003-0634-9599 ; 0000-0002-6842-1552 ; 0000-0001-6573-525X ; 0000-0003-4778-8897 ; 0000-0002-0772-4795 ; 0000-0001-5777-9711 ; 0000-0002-9334-0738 ; 0000-0001-7998-1240 ; 0000-0002-9304-8235 ; 0000-0001-9494-7630 ; 0000-0002-3240-1293 ; 0000-0003-2700-0353 ; 0000-0003-3386-6794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL080126$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL080126$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,11501,27911,27912,46455,46879</link.rule.ids></links><search><creatorcontrib>Hirai, A.</creatorcontrib><creatorcontrib>Tsuchiya, F.</creatorcontrib><creatorcontrib>Obara, T.</creatorcontrib><creatorcontrib>Kasaba, Y.</creatorcontrib><creatorcontrib>Katoh, Y.</creatorcontrib><creatorcontrib>Misawa, H.</creatorcontrib><creatorcontrib>Shiokawa, K.</creatorcontrib><creatorcontrib>Miyoshi, Y.</creatorcontrib><creatorcontrib>Kurita, S.</creatorcontrib><creatorcontrib>Matsuda, S.</creatorcontrib><creatorcontrib>Connors, M.</creatorcontrib><creatorcontrib>Nagatsuma, T.</creatorcontrib><creatorcontrib>Sakaguchi, K.</creatorcontrib><creatorcontrib>Kasahara, Y.</creatorcontrib><creatorcontrib>Kumamoto, A.</creatorcontrib><creatorcontrib>Matsuoka, A.</creatorcontrib><creatorcontrib>Shoji, M.</creatorcontrib><creatorcontrib>Shinohara, I.</creatorcontrib><creatorcontrib>Albert, J. M.</creatorcontrib><title>Temporal and Spatial Correspondence of Pc1/EMIC Waves and Relativistic Electron Precipitations Observed With Ground‐Based Multi‐Instruments on 27 March 2017</title><title>Geophysical research letters</title><description>Electromagnetic ion cyclotron (EMIC) waves potentially cause precipitation loss of relativistic electrons from the outer radiation belt to the atmosphere through pitch angle scattering. However, the direct evidence of each EMIC wave element and burst of precipitation has not yet been reported. Here we show the temporal and spatial correspondence of the EMIC waves with relativistic electron precipitation (REP) during the geomagnetic storm of 27 March 2017. EMIC waves were observed at several stations in North America. REP was detected as a decrease of subionospheric radio amplitudes observed at Athabasca, Canada. When isolated proton aurora, observed at Athabasca, appeared on the radio propagation path, we found a good correspondence between the temporal variations of REP and EMIC waves, and REP preceded EMIC waves by 24 s. This time lag is consistent with the travel time difference between relativistic electrons and EMIC waves from the magnetospheric equatorial plane to the ionosphere.
Plain Language Summary
The flux of relativistic electrons in the outer radiation belt can vary in a time scale of hours to days during magnetically disturbed condition. One of the loss mechanisms of relativistic electrons is precipitation into the atmosphere due to interaction between electrons and plasma waves in the magnetosphere. Electromagnetic ion cyclotron waves, which are excited in the magnetosphere, are effective for causing precipitation loss of relativistic electrons. These waves can have rising spectral structure with an increase in frequency quasiperiodically. In this study, we made use of multiple ground‐based observations and confirmed where and when relativistic electrons precipitated due to scattering by these waves. For the first time, we found direct evidence of correspondence between each wave element with rising tone and each burst of electron precipitation. We suggest that the precipitation of relativistic electrons occurred when the intensity of waves increased in the period of a few tens of seconds to minutes.
Key Points
Relativistic electron precipitation and electromagnetic ion cyclotron waves were observed during the main phase of a geomagnetic storm
Isolated proton auroras appeared on the radio propagation paths on which relativistic electron precipitation was detected
We found a good correspondence between the time variations of relativistic electron precipitation and electromagnetic ion cyclotron waves</description><subject>Atmosphere</subject><subject>Cyclotrons</subject><subject>Electron precipitation</subject><subject>Electrons</subject><subject>EMIC waves</subject><subject>energetic electron precipitation</subject><subject>Geomagnetic storms</subject><subject>Geomagnetism</subject><subject>Ground-based observation</subject><subject>Instruments</subject><subject>Ion cyclotron waves</subject><subject>Ionosphere</subject><subject>Jupiter</subject><subject>Magnetic storms</subject><subject>Magnetosphere</subject><subject>Magnetospheres</subject><subject>Outer radiation belt</subject><subject>Pitch</subject><subject>Pitch (inclination)</subject><subject>Plasma waves</subject><subject>Radiation</subject><subject>Radio</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Scattering</subject><subject>Storms</subject><subject>subionosheric propagation</subject><subject>Temporal variations</subject><subject>Time lag</subject><subject>Travel time</subject><subject>Waves</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUlOAzEQRS0EEmHYcQBLbAl4aPewhCiESImCGJRly3FXK446dmO7g7LjCByBs3ESDGHBilVNT79U9RE6o-SSElZcMULz0YTkhLJ0D_VokST9nJBsH_UIKWLOsvQQHXm_IoRwwmkPfTzBurVONliaCj-2MuiYD6xz4FtrKjAKsK3xvaJXw-l4gOdyA_4HfoAm0hvtg1Z42IAKzhp870DpVoc4ssbj2cKD20CF5zos8cjZzlSfb-830sfetGuCjtXY-OC6NZjgcZRgGZ5Kp5Y43pOdoINaNh5Of-Mxer4dPg3u-pPZaDy4nvQVz3PR53UlRQa1AJqlrEhZli-oKBKSKsYSISWvJWUsfqnmQiRKEcb4QlWQyXSRJJQfo_OdbuvsSwc-lCvbORNXloymhch5wvNIXewo5az3DuqydXot3bakpPz2oPzrQcTZDn_VDWz_ZcvRwyQuYYJ_AcVWiWQ</recordid><startdate>20181228</startdate><enddate>20181228</enddate><creator>Hirai, A.</creator><creator>Tsuchiya, F.</creator><creator>Obara, T.</creator><creator>Kasaba, Y.</creator><creator>Katoh, Y.</creator><creator>Misawa, H.</creator><creator>Shiokawa, K.</creator><creator>Miyoshi, Y.</creator><creator>Kurita, S.</creator><creator>Matsuda, S.</creator><creator>Connors, M.</creator><creator>Nagatsuma, T.</creator><creator>Sakaguchi, K.</creator><creator>Kasahara, Y.</creator><creator>Kumamoto, A.</creator><creator>Matsuoka, A.</creator><creator>Shoji, M.</creator><creator>Shinohara, I.</creator><creator>Albert, J. M.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4318-0633</orcidid><orcidid>https://orcid.org/0000-0002-3988-1488</orcidid><orcidid>https://orcid.org/0000-0002-1553-9557</orcidid><orcidid>https://orcid.org/0000-0002-8160-3553</orcidid><orcidid>https://orcid.org/0000-0003-1167-533X</orcidid><orcidid>https://orcid.org/0000-0003-0634-9599</orcidid><orcidid>https://orcid.org/0000-0002-6842-1552</orcidid><orcidid>https://orcid.org/0000-0001-6573-525X</orcidid><orcidid>https://orcid.org/0000-0003-4778-8897</orcidid><orcidid>https://orcid.org/0000-0002-0772-4795</orcidid><orcidid>https://orcid.org/0000-0001-5777-9711</orcidid><orcidid>https://orcid.org/0000-0002-9334-0738</orcidid><orcidid>https://orcid.org/0000-0001-7998-1240</orcidid><orcidid>https://orcid.org/0000-0002-9304-8235</orcidid><orcidid>https://orcid.org/0000-0001-9494-7630</orcidid><orcidid>https://orcid.org/0000-0002-3240-1293</orcidid><orcidid>https://orcid.org/0000-0003-2700-0353</orcidid><orcidid>https://orcid.org/0000-0003-3386-6794</orcidid></search><sort><creationdate>20181228</creationdate><title>Temporal and Spatial Correspondence of Pc1/EMIC Waves and Relativistic Electron Precipitations Observed With Ground‐Based Multi‐Instruments on 27 March 2017</title><author>Hirai, A. ; Tsuchiya, F. ; Obara, T. ; Kasaba, Y. ; Katoh, Y. ; Misawa, H. ; Shiokawa, K. ; Miyoshi, Y. ; Kurita, S. ; Matsuda, S. ; Connors, M. ; Nagatsuma, T. ; Sakaguchi, K. ; Kasahara, Y. ; Kumamoto, A. ; Matsuoka, A. ; Shoji, M. ; Shinohara, I. ; Albert, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-3fda57ef5e176296278b159406c2245aa3fa122029f3554cc0223bcde7a6b4413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmosphere</topic><topic>Cyclotrons</topic><topic>Electron precipitation</topic><topic>Electrons</topic><topic>EMIC waves</topic><topic>energetic electron precipitation</topic><topic>Geomagnetic storms</topic><topic>Geomagnetism</topic><topic>Ground-based observation</topic><topic>Instruments</topic><topic>Ion cyclotron waves</topic><topic>Ionosphere</topic><topic>Jupiter</topic><topic>Magnetic storms</topic><topic>Magnetosphere</topic><topic>Magnetospheres</topic><topic>Outer radiation belt</topic><topic>Pitch</topic><topic>Pitch (inclination)</topic><topic>Plasma waves</topic><topic>Radiation</topic><topic>Radio</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Scattering</topic><topic>Storms</topic><topic>subionosheric propagation</topic><topic>Temporal variations</topic><topic>Time lag</topic><topic>Travel time</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirai, A.</creatorcontrib><creatorcontrib>Tsuchiya, F.</creatorcontrib><creatorcontrib>Obara, T.</creatorcontrib><creatorcontrib>Kasaba, Y.</creatorcontrib><creatorcontrib>Katoh, Y.</creatorcontrib><creatorcontrib>Misawa, H.</creatorcontrib><creatorcontrib>Shiokawa, K.</creatorcontrib><creatorcontrib>Miyoshi, Y.</creatorcontrib><creatorcontrib>Kurita, S.</creatorcontrib><creatorcontrib>Matsuda, S.</creatorcontrib><creatorcontrib>Connors, M.</creatorcontrib><creatorcontrib>Nagatsuma, T.</creatorcontrib><creatorcontrib>Sakaguchi, K.</creatorcontrib><creatorcontrib>Kasahara, Y.</creatorcontrib><creatorcontrib>Kumamoto, A.</creatorcontrib><creatorcontrib>Matsuoka, A.</creatorcontrib><creatorcontrib>Shoji, M.</creatorcontrib><creatorcontrib>Shinohara, I.</creatorcontrib><creatorcontrib>Albert, J. M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirai, A.</au><au>Tsuchiya, F.</au><au>Obara, T.</au><au>Kasaba, Y.</au><au>Katoh, Y.</au><au>Misawa, H.</au><au>Shiokawa, K.</au><au>Miyoshi, Y.</au><au>Kurita, S.</au><au>Matsuda, S.</au><au>Connors, M.</au><au>Nagatsuma, T.</au><au>Sakaguchi, K.</au><au>Kasahara, Y.</au><au>Kumamoto, A.</au><au>Matsuoka, A.</au><au>Shoji, M.</au><au>Shinohara, I.</au><au>Albert, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal and Spatial Correspondence of Pc1/EMIC Waves and Relativistic Electron Precipitations Observed With Ground‐Based Multi‐Instruments on 27 March 2017</atitle><jtitle>Geophysical research letters</jtitle><date>2018-12-28</date><risdate>2018</risdate><volume>45</volume><issue>24</issue><spage>13,182</spage><epage>13,191</epage><pages>13,182-13,191</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Electromagnetic ion cyclotron (EMIC) waves potentially cause precipitation loss of relativistic electrons from the outer radiation belt to the atmosphere through pitch angle scattering. However, the direct evidence of each EMIC wave element and burst of precipitation has not yet been reported. Here we show the temporal and spatial correspondence of the EMIC waves with relativistic electron precipitation (REP) during the geomagnetic storm of 27 March 2017. EMIC waves were observed at several stations in North America. REP was detected as a decrease of subionospheric radio amplitudes observed at Athabasca, Canada. When isolated proton aurora, observed at Athabasca, appeared on the radio propagation path, we found a good correspondence between the temporal variations of REP and EMIC waves, and REP preceded EMIC waves by 24 s. This time lag is consistent with the travel time difference between relativistic electrons and EMIC waves from the magnetospheric equatorial plane to the ionosphere.
Plain Language Summary
The flux of relativistic electrons in the outer radiation belt can vary in a time scale of hours to days during magnetically disturbed condition. One of the loss mechanisms of relativistic electrons is precipitation into the atmosphere due to interaction between electrons and plasma waves in the magnetosphere. Electromagnetic ion cyclotron waves, which are excited in the magnetosphere, are effective for causing precipitation loss of relativistic electrons. These waves can have rising spectral structure with an increase in frequency quasiperiodically. In this study, we made use of multiple ground‐based observations and confirmed where and when relativistic electrons precipitated due to scattering by these waves. For the first time, we found direct evidence of correspondence between each wave element with rising tone and each burst of electron precipitation. We suggest that the precipitation of relativistic electrons occurred when the intensity of waves increased in the period of a few tens of seconds to minutes.
Key Points
Relativistic electron precipitation and electromagnetic ion cyclotron waves were observed during the main phase of a geomagnetic storm
Isolated proton auroras appeared on the radio propagation paths on which relativistic electron precipitation was detected
We found a good correspondence between the time variations of relativistic electron precipitation and electromagnetic ion cyclotron waves</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2018GL080126</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4318-0633</orcidid><orcidid>https://orcid.org/0000-0002-3988-1488</orcidid><orcidid>https://orcid.org/0000-0002-1553-9557</orcidid><orcidid>https://orcid.org/0000-0002-8160-3553</orcidid><orcidid>https://orcid.org/0000-0003-1167-533X</orcidid><orcidid>https://orcid.org/0000-0003-0634-9599</orcidid><orcidid>https://orcid.org/0000-0002-6842-1552</orcidid><orcidid>https://orcid.org/0000-0001-6573-525X</orcidid><orcidid>https://orcid.org/0000-0003-4778-8897</orcidid><orcidid>https://orcid.org/0000-0002-0772-4795</orcidid><orcidid>https://orcid.org/0000-0001-5777-9711</orcidid><orcidid>https://orcid.org/0000-0002-9334-0738</orcidid><orcidid>https://orcid.org/0000-0001-7998-1240</orcidid><orcidid>https://orcid.org/0000-0002-9304-8235</orcidid><orcidid>https://orcid.org/0000-0001-9494-7630</orcidid><orcidid>https://orcid.org/0000-0002-3240-1293</orcidid><orcidid>https://orcid.org/0000-0003-2700-0353</orcidid><orcidid>https://orcid.org/0000-0003-3386-6794</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2018-12, Vol.45 (24), p.13,182-13,191 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_journals_2169583438 |
source | Wiley-Blackwell AGU Digital Library |
subjects | Atmosphere Cyclotrons Electron precipitation Electrons EMIC waves energetic electron precipitation Geomagnetic storms Geomagnetism Ground-based observation Instruments Ion cyclotron waves Ionosphere Jupiter Magnetic storms Magnetosphere Magnetospheres Outer radiation belt Pitch Pitch (inclination) Plasma waves Radiation Radio Relativism Relativistic effects Scattering Storms subionosheric propagation Temporal variations Time lag Travel time Waves |
title | Temporal and Spatial Correspondence of Pc1/EMIC Waves and Relativistic Electron Precipitations Observed With Ground‐Based Multi‐Instruments on 27 March 2017 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20and%20Spatial%20Correspondence%20of%20Pc1/EMIC%20Waves%20and%20Relativistic%20Electron%20Precipitations%20Observed%20With%20Ground%E2%80%90Based%20Multi%E2%80%90Instruments%20on%2027%20March%202017&rft.jtitle=Geophysical%20research%20letters&rft.au=Hirai,%20A.&rft.date=2018-12-28&rft.volume=45&rft.issue=24&rft.spage=13,182&rft.epage=13,191&rft.pages=13,182-13,191&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL080126&rft_dat=%3Cproquest_cross%3E2169583438%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3885-3fda57ef5e176296278b159406c2245aa3fa122029f3554cc0223bcde7a6b4413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2169583438&rft_id=info:pmid/&rfr_iscdi=true |