Loading…
Discontinuous carbon fiber/polyamide composites with microencapsulated paraffin for thermal energy storage
ABSTRACT This work focuses on the development of multifunctional thermoplastic composites with thermal energy storage capability. A polyamide 12 (PA12) matrix was filled with a phase change material (PCM), constituted by paraffin microcapsules (Tmelt = 43 °C), and reinforced with carbon fibers (CFs)...
Saved in:
Published in: | Journal of applied polymer science 2019-04, Vol.136 (16), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
This work focuses on the development of multifunctional thermoplastic composites with thermal energy storage capability. A polyamide 12 (PA12) matrix was filled with a phase change material (PCM), constituted by paraffin microcapsules (Tmelt = 43 °C), and reinforced with carbon fibers (CFs) of two different lengths (chopped/CF “long”[CFL] and milled/CF “short” [CFS]). DSC tests showed that the melting/crystallization enthalpy values increase with the PCM weight fraction up to 60 J/g. The enthalpy was 41–94% of the expected value and decreased with an increase in the fiber content, because the capsules were damaged by the increasing viscosity and shear stresses during compounding. Long CFs increased the elastic modulus (+316%), tensile strength (+26%), and thermal conductivity (+54%) with respect to neat PA12. Thermal imaging tests evidenced a slower cooling for the samples containing PCM, and once again the CFS‐containing samples outperformed those with CFL, due to the higher effective PCM content. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47408. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.47408 |