Loading…

Moss' logic for ordered coalgebras

We present a finitary version of Moss' coalgebraic logic for \(T\)-coalgebras, where \(T\) is a locally monotone endofunctor of the category of posets and monotone maps. The logic uses a single cover modality whose arity is given by the least finitary subfunctor of the dual of the coalgebra fun...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-08
Main Authors: Bílková, Marta, Dostál, Matěj
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bílková, Marta
Dostál, Matěj
description We present a finitary version of Moss' coalgebraic logic for \(T\)-coalgebras, where \(T\) is a locally monotone endofunctor of the category of posets and monotone maps. The logic uses a single cover modality whose arity is given by the least finitary subfunctor of the dual of the coalgebra functor \(T_\omega^\partial\), and the semantics of the modality is given by relation lifting. For the semantics to work, \(T\) is required to preserve exact squares. For the finitary setting to work, \(T_\omega^\partial\) is required to preserve finite intersections. We develop a notion of a base for subobjects of \(T_\omega X\). This in particular allows us to talk about the finite poset of subformulas for a given formula. The notion of a base is introduced generally for a category equipped with a suitable factorisation system. We prove that the resulting logic has the Hennessy-Milner property for the notion of similarity based on the notion of relation lifting. We define a sequent proof system for the logic, and prove its completeness.
doi_str_mv 10.48550/arxiv.1901.06547
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2170068037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2170068037</sourcerecordid><originalsourceid>FETCH-LOGICAL-a957-5f81828969ca58510ad9910070e39a373fd008b4348ac87905ea7048b5cb16143</originalsourceid><addsrcrecordid>eNotzU1LAzEQgOEgCC21P8DbUg-edp1JMsnkKMUvqHjpvcxms6VlMZpY8edb0NN7e16lrhE6y0RwJ-Xn8N1hAOzAkfUXaq6NwZat1jO1rPUIANp5TWTmavWaa71tprw_xGbMpcllSCUNTcwy7VNfpF6py1Gmmpb_Xajt48N2_dxu3p5e1vebVgL5lkZG1hxciEJMCDKEgAAekglivBkHAO6tsSyRfQBK4sFyT7FHh9Ys1M0f-1Hy5ynVr90xn8r7-bjT6AEcw1n5BRJ3Pcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170068037</pqid></control><display><type>article</type><title>Moss' logic for ordered coalgebras</title><source>Publicly Available Content Database</source><creator>Bílková, Marta ; Dostál, Matěj</creator><creatorcontrib>Bílková, Marta ; Dostál, Matěj</creatorcontrib><description>We present a finitary version of Moss' coalgebraic logic for \(T\)-coalgebras, where \(T\) is a locally monotone endofunctor of the category of posets and monotone maps. The logic uses a single cover modality whose arity is given by the least finitary subfunctor of the dual of the coalgebra functor \(T_\omega^\partial\), and the semantics of the modality is given by relation lifting. For the semantics to work, \(T\) is required to preserve exact squares. For the finitary setting to work, \(T_\omega^\partial\) is required to preserve finite intersections. We develop a notion of a base for subobjects of \(T_\omega X\). This in particular allows us to talk about the finite poset of subformulas for a given formula. The notion of a base is introduced generally for a category equipped with a suitable factorisation system. We prove that the resulting logic has the Hennessy-Milner property for the notion of similarity based on the notion of relation lifting. We define a sequent proof system for the logic, and prove its completeness.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1901.06547</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Intersections ; Logic ; Semantics ; Set theory</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2170068037?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Bílková, Marta</creatorcontrib><creatorcontrib>Dostál, Matěj</creatorcontrib><title>Moss' logic for ordered coalgebras</title><title>arXiv.org</title><description>We present a finitary version of Moss' coalgebraic logic for \(T\)-coalgebras, where \(T\) is a locally monotone endofunctor of the category of posets and monotone maps. The logic uses a single cover modality whose arity is given by the least finitary subfunctor of the dual of the coalgebra functor \(T_\omega^\partial\), and the semantics of the modality is given by relation lifting. For the semantics to work, \(T\) is required to preserve exact squares. For the finitary setting to work, \(T_\omega^\partial\) is required to preserve finite intersections. We develop a notion of a base for subobjects of \(T_\omega X\). This in particular allows us to talk about the finite poset of subformulas for a given formula. The notion of a base is introduced generally for a category equipped with a suitable factorisation system. We prove that the resulting logic has the Hennessy-Milner property for the notion of similarity based on the notion of relation lifting. We define a sequent proof system for the logic, and prove its completeness.</description><subject>Intersections</subject><subject>Logic</subject><subject>Semantics</subject><subject>Set theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzU1LAzEQgOEgCC21P8DbUg-edp1JMsnkKMUvqHjpvcxms6VlMZpY8edb0NN7e16lrhE6y0RwJ-Xn8N1hAOzAkfUXaq6NwZat1jO1rPUIANp5TWTmavWaa71tprw_xGbMpcllSCUNTcwy7VNfpF6py1Gmmpb_Xajt48N2_dxu3p5e1vebVgL5lkZG1hxciEJMCDKEgAAekglivBkHAO6tsSyRfQBK4sFyT7FHh9Ys1M0f-1Hy5ynVr90xn8r7-bjT6AEcw1n5BRJ3Pcw</recordid><startdate>20220806</startdate><enddate>20220806</enddate><creator>Bílková, Marta</creator><creator>Dostál, Matěj</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220806</creationdate><title>Moss' logic for ordered coalgebras</title><author>Bílková, Marta ; Dostál, Matěj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a957-5f81828969ca58510ad9910070e39a373fd008b4348ac87905ea7048b5cb16143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Intersections</topic><topic>Logic</topic><topic>Semantics</topic><topic>Set theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Bílková, Marta</creatorcontrib><creatorcontrib>Dostál, Matěj</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bílková, Marta</au><au>Dostál, Matěj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moss' logic for ordered coalgebras</atitle><jtitle>arXiv.org</jtitle><date>2022-08-06</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We present a finitary version of Moss' coalgebraic logic for \(T\)-coalgebras, where \(T\) is a locally monotone endofunctor of the category of posets and monotone maps. The logic uses a single cover modality whose arity is given by the least finitary subfunctor of the dual of the coalgebra functor \(T_\omega^\partial\), and the semantics of the modality is given by relation lifting. For the semantics to work, \(T\) is required to preserve exact squares. For the finitary setting to work, \(T_\omega^\partial\) is required to preserve finite intersections. We develop a notion of a base for subobjects of \(T_\omega X\). This in particular allows us to talk about the finite poset of subformulas for a given formula. The notion of a base is introduced generally for a category equipped with a suitable factorisation system. We prove that the resulting logic has the Hennessy-Milner property for the notion of similarity based on the notion of relation lifting. We define a sequent proof system for the logic, and prove its completeness.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1901.06547</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2170068037
source Publicly Available Content Database
subjects Intersections
Logic
Semantics
Set theory
title Moss' logic for ordered coalgebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moss'%20logic%20for%20ordered%20coalgebras&rft.jtitle=arXiv.org&rft.au=B%C3%ADlkov%C3%A1,%20Marta&rft.date=2022-08-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1901.06547&rft_dat=%3Cproquest%3E2170068037%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a957-5f81828969ca58510ad9910070e39a373fd008b4348ac87905ea7048b5cb16143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2170068037&rft_id=info:pmid/&rfr_iscdi=true