Loading…

Synthesis of MnS from Single- and Multi-Source Precursors for Photocatalytic and Battery Applications

Nanomaterials have been shown to possess exclusive properties in heterogeneous catalysis as evidenced by studies dedicated to the synthesis of transition-metal-containing nanomaterials. However, the series of nanomaterials which have been synthesized are mostly oxides. A ligand, 1-(2-chloro-4-nitrop...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2019-04, Vol.48 (4), p.2278-2288
Main Authors: Hussain, Wajid, Malik, Hinna, Hussain, Raja Azadar, Hussain, Hidayat, Green, Ivan Robert, Marwat, Shafiqullah, Bahadur, Ali, Iqbal, Shahid, Farooq, Muhammad Umar, Li, Hui, Badshah, Amin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanomaterials have been shown to possess exclusive properties in heterogeneous catalysis as evidenced by studies dedicated to the synthesis of transition-metal-containing nanomaterials. However, the series of nanomaterials which have been synthesized are mostly oxides. A ligand, 1-(2-chloro-4-nitrophenyl)-3,3-chlorobenzoyl (Tu), has been created through which MnS nanoparticles (NPs) and nanosheets (NSs) have been successfully synthesized, initially from a single-source precursor (SS) and then from multi-source precursors, respectively. The main objective of this article was to identify the differences in the morphologies of the materials synthesized from the two different sources, with photodegradation and battery applications performed just with MnS NPs (synthesized by the SS method). A preliminary study has been carried out on the photocatalytic properties and battery applications of the recently synthesized MnS employing the SS method. MnS NPs demonstrated higher activity than their bulk sheet for the photocatalytic degradation of four different dyes, methyl violet, methylene green, methylene blue, and rhodamine B, under visible-light irradiation. More significantly, the preparation method in the present work might be applied to other metal chalcogenide nanomaterials for various new applications. More notably, battery applications have been evaluated for MnS NPs (synthesized by the SS method) by testing their electrochemical discharge/charge at voltage limits of − 0.2 to 3.2 V versus Li/Li + .
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-019-06929-w