Loading…

Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High‐Performance Cathode for Na‐Ion Batteries

Prussian blue analogs with an open framework are ideal cathodes for Na‐ion batteries. A superior high‐rate and highly stable monoclinic nickel hexacyanoferrate (NiHCF‐3) is synthesized via a facile one‐step crystallization‐controlled co‐precipitation method. It gives a high specific capacity of 85.7...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2019-01, Vol.9 (4), p.n/a
Main Authors: Xu, Yue, Wan, Jing, Huang, Li, Ou, Mingyang, Fan, Chenyang, Wei, Peng, Peng, Jian, Liu, Yi, Qiu, Yuegang, Sun, Xueping, Fang, Chun, Li, Qing, Han, Jiantao, Huang, Yunhui, Alonso, José Antonio, Zhao, Yusheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3
cites cdi_FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced energy materials
container_volume 9
creator Xu, Yue
Wan, Jing
Huang, Li
Ou, Mingyang
Fan, Chenyang
Wei, Peng
Peng, Jian
Liu, Yi
Qiu, Yuegang
Sun, Xueping
Fang, Chun
Li, Qing
Han, Jiantao
Huang, Yunhui
Alonso, José Antonio
Zhao, Yusheng
description Prussian blue analogs with an open framework are ideal cathodes for Na‐ion batteries. A superior high‐rate and highly stable monoclinic nickel hexacyanoferrate (NiHCF‐3) is synthesized via a facile one‐step crystallization‐controlled co‐precipitation method. It gives a high specific capacity of 85.7 mAh g−1, nearly to its theoretical value. It also exhibits an excellent rate capability with a high capacity retention ratio of 78% at 50 C and a stable cycling performance over 1200 cycles. Through the ex situ X‐ray diffraction and pair distribution function measurements, it is found that the monoclinic structure with distorted framework is greatly related to the high Na content. The electronic structure studies by density functional theory (DFT) calculation demonstrate that NiHCF‐3 deformation promotes the framework conductivity and improves the electrochemical activity of Fe, which results in an ultrahigh‐rate performance of monoclinic phase. Furthermore, the high‐quality monoclinic (NiHCF‐3) exhibits excellent compatibility with both hard carbon and NaTi2(PO4)3 anodes in full cells, which shows great prospects for the application in the large‐scale energy storage systems. A performance optimization induced by the structure distortion caused by Na content is described. The high‐Na‐content monoclinic nickel hexacyanoferrate exhibits a large specific capacity of 85.7 mAh g−1 at 0.1 C, a high rate capability of 66.2 mAh g−1 at 50 C, and a long cycling life of 1200 cycles without apparent decay.
doi_str_mv 10.1002/aenm.201803158
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2170294682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2170294682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3</originalsourceid><addsrcrecordid>eNqFkM9OAjEQxjdGE4ly9dzE82L_bbd7REQhATRRz5uh7UoRtth2o9x8BJ_RJ3EJBo_OZSYzv--b5EuSC4J7BGN6BaZe9ygmEjOSyaOkQwThqZAcHx9mRk-TbghL3BYvCGask8TH6BsVG2_QjQ3R-Whdjca1bpTRaOpqp1a2tgrNrHo1KzQyH6C2ULvKeA_RIAhoZF8W359fD8ZXzq-hVgYNIC6cNqhdoBm0x3Hreg0xGm9NOE9OKlgF0_3tZ8nz7fBpMEon93fjQX-SKkZymQLPaSa5FJpixilUZC4yVvBC5bnUmlImC1aJXAOZU5EBzVqMyUpzkUsBwM6Sy73vxru3xoRYLl3j6_ZlSUmOacGFpC3V21PKuxC8qcqNt2vw25LgchduuQu3PITbCoq94N2uzPYfuuwPZ9M_7Q_PfH-O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170294682</pqid></control><display><type>article</type><title>Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High‐Performance Cathode for Na‐Ion Batteries</title><source>Wiley</source><creator>Xu, Yue ; Wan, Jing ; Huang, Li ; Ou, Mingyang ; Fan, Chenyang ; Wei, Peng ; Peng, Jian ; Liu, Yi ; Qiu, Yuegang ; Sun, Xueping ; Fang, Chun ; Li, Qing ; Han, Jiantao ; Huang, Yunhui ; Alonso, José Antonio ; Zhao, Yusheng</creator><creatorcontrib>Xu, Yue ; Wan, Jing ; Huang, Li ; Ou, Mingyang ; Fan, Chenyang ; Wei, Peng ; Peng, Jian ; Liu, Yi ; Qiu, Yuegang ; Sun, Xueping ; Fang, Chun ; Li, Qing ; Han, Jiantao ; Huang, Yunhui ; Alonso, José Antonio ; Zhao, Yusheng</creatorcontrib><description>Prussian blue analogs with an open framework are ideal cathodes for Na‐ion batteries. A superior high‐rate and highly stable monoclinic nickel hexacyanoferrate (NiHCF‐3) is synthesized via a facile one‐step crystallization‐controlled co‐precipitation method. It gives a high specific capacity of 85.7 mAh g−1, nearly to its theoretical value. It also exhibits an excellent rate capability with a high capacity retention ratio of 78% at 50 C and a stable cycling performance over 1200 cycles. Through the ex situ X‐ray diffraction and pair distribution function measurements, it is found that the monoclinic structure with distorted framework is greatly related to the high Na content. The electronic structure studies by density functional theory (DFT) calculation demonstrate that NiHCF‐3 deformation promotes the framework conductivity and improves the electrochemical activity of Fe, which results in an ultrahigh‐rate performance of monoclinic phase. Furthermore, the high‐quality monoclinic (NiHCF‐3) exhibits excellent compatibility with both hard carbon and NaTi2(PO4)3 anodes in full cells, which shows great prospects for the application in the large‐scale energy storage systems. A performance optimization induced by the structure distortion caused by Na content is described. The high‐Na‐content monoclinic nickel hexacyanoferrate exhibits a large specific capacity of 85.7 mAh g−1 at 0.1 C, a high rate capability of 66.2 mAh g−1 at 50 C, and a long cycling life of 1200 cycles without apparent decay.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201803158</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Crystallization ; crystallization‐controlled synthesis ; Deformation ; Density functional theory ; Distribution functions ; Electronic structure ; Energy storage ; high‐rate capability ; Nickel ; Pigments ; Prussian blue analogs ; Sodium-ion batteries ; Storage systems ; structure distortion ; X-ray diffraction</subject><ispartof>Advanced energy materials, 2019-01, Vol.9 (4), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3</citedby><cites>FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3</cites><orcidid>0000-0002-9509-3785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Yue</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Ou, Mingyang</creatorcontrib><creatorcontrib>Fan, Chenyang</creatorcontrib><creatorcontrib>Wei, Peng</creatorcontrib><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Qiu, Yuegang</creatorcontrib><creatorcontrib>Sun, Xueping</creatorcontrib><creatorcontrib>Fang, Chun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Han, Jiantao</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><creatorcontrib>Alonso, José Antonio</creatorcontrib><creatorcontrib>Zhao, Yusheng</creatorcontrib><title>Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High‐Performance Cathode for Na‐Ion Batteries</title><title>Advanced energy materials</title><description>Prussian blue analogs with an open framework are ideal cathodes for Na‐ion batteries. A superior high‐rate and highly stable monoclinic nickel hexacyanoferrate (NiHCF‐3) is synthesized via a facile one‐step crystallization‐controlled co‐precipitation method. It gives a high specific capacity of 85.7 mAh g−1, nearly to its theoretical value. It also exhibits an excellent rate capability with a high capacity retention ratio of 78% at 50 C and a stable cycling performance over 1200 cycles. Through the ex situ X‐ray diffraction and pair distribution function measurements, it is found that the monoclinic structure with distorted framework is greatly related to the high Na content. The electronic structure studies by density functional theory (DFT) calculation demonstrate that NiHCF‐3 deformation promotes the framework conductivity and improves the electrochemical activity of Fe, which results in an ultrahigh‐rate performance of monoclinic phase. Furthermore, the high‐quality monoclinic (NiHCF‐3) exhibits excellent compatibility with both hard carbon and NaTi2(PO4)3 anodes in full cells, which shows great prospects for the application in the large‐scale energy storage systems. A performance optimization induced by the structure distortion caused by Na content is described. The high‐Na‐content monoclinic nickel hexacyanoferrate exhibits a large specific capacity of 85.7 mAh g−1 at 0.1 C, a high rate capability of 66.2 mAh g−1 at 50 C, and a long cycling life of 1200 cycles without apparent decay.</description><subject>Cathodes</subject><subject>Crystallization</subject><subject>crystallization‐controlled synthesis</subject><subject>Deformation</subject><subject>Density functional theory</subject><subject>Distribution functions</subject><subject>Electronic structure</subject><subject>Energy storage</subject><subject>high‐rate capability</subject><subject>Nickel</subject><subject>Pigments</subject><subject>Prussian blue analogs</subject><subject>Sodium-ion batteries</subject><subject>Storage systems</subject><subject>structure distortion</subject><subject>X-ray diffraction</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OAjEQxjdGE4ly9dzE82L_bbd7REQhATRRz5uh7UoRtth2o9x8BJ_RJ3EJBo_OZSYzv--b5EuSC4J7BGN6BaZe9ygmEjOSyaOkQwThqZAcHx9mRk-TbghL3BYvCGask8TH6BsVG2_QjQ3R-Whdjca1bpTRaOpqp1a2tgrNrHo1KzQyH6C2ULvKeA_RIAhoZF8W359fD8ZXzq-hVgYNIC6cNqhdoBm0x3Hreg0xGm9NOE9OKlgF0_3tZ8nz7fBpMEon93fjQX-SKkZymQLPaSa5FJpixilUZC4yVvBC5bnUmlImC1aJXAOZU5EBzVqMyUpzkUsBwM6Sy73vxru3xoRYLl3j6_ZlSUmOacGFpC3V21PKuxC8qcqNt2vw25LgchduuQu3PITbCoq94N2uzPYfuuwPZ9M_7Q_PfH-O</recordid><startdate>20190124</startdate><enddate>20190124</enddate><creator>Xu, Yue</creator><creator>Wan, Jing</creator><creator>Huang, Li</creator><creator>Ou, Mingyang</creator><creator>Fan, Chenyang</creator><creator>Wei, Peng</creator><creator>Peng, Jian</creator><creator>Liu, Yi</creator><creator>Qiu, Yuegang</creator><creator>Sun, Xueping</creator><creator>Fang, Chun</creator><creator>Li, Qing</creator><creator>Han, Jiantao</creator><creator>Huang, Yunhui</creator><creator>Alonso, José Antonio</creator><creator>Zhao, Yusheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9509-3785</orcidid></search><sort><creationdate>20190124</creationdate><title>Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High‐Performance Cathode for Na‐Ion Batteries</title><author>Xu, Yue ; Wan, Jing ; Huang, Li ; Ou, Mingyang ; Fan, Chenyang ; Wei, Peng ; Peng, Jian ; Liu, Yi ; Qiu, Yuegang ; Sun, Xueping ; Fang, Chun ; Li, Qing ; Han, Jiantao ; Huang, Yunhui ; Alonso, José Antonio ; Zhao, Yusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cathodes</topic><topic>Crystallization</topic><topic>crystallization‐controlled synthesis</topic><topic>Deformation</topic><topic>Density functional theory</topic><topic>Distribution functions</topic><topic>Electronic structure</topic><topic>Energy storage</topic><topic>high‐rate capability</topic><topic>Nickel</topic><topic>Pigments</topic><topic>Prussian blue analogs</topic><topic>Sodium-ion batteries</topic><topic>Storage systems</topic><topic>structure distortion</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yue</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Ou, Mingyang</creatorcontrib><creatorcontrib>Fan, Chenyang</creatorcontrib><creatorcontrib>Wei, Peng</creatorcontrib><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Qiu, Yuegang</creatorcontrib><creatorcontrib>Sun, Xueping</creatorcontrib><creatorcontrib>Fang, Chun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Han, Jiantao</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><creatorcontrib>Alonso, José Antonio</creatorcontrib><creatorcontrib>Zhao, Yusheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yue</au><au>Wan, Jing</au><au>Huang, Li</au><au>Ou, Mingyang</au><au>Fan, Chenyang</au><au>Wei, Peng</au><au>Peng, Jian</au><au>Liu, Yi</au><au>Qiu, Yuegang</au><au>Sun, Xueping</au><au>Fang, Chun</au><au>Li, Qing</au><au>Han, Jiantao</au><au>Huang, Yunhui</au><au>Alonso, José Antonio</au><au>Zhao, Yusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High‐Performance Cathode for Na‐Ion Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2019-01-24</date><risdate>2019</risdate><volume>9</volume><issue>4</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Prussian blue analogs with an open framework are ideal cathodes for Na‐ion batteries. A superior high‐rate and highly stable monoclinic nickel hexacyanoferrate (NiHCF‐3) is synthesized via a facile one‐step crystallization‐controlled co‐precipitation method. It gives a high specific capacity of 85.7 mAh g−1, nearly to its theoretical value. It also exhibits an excellent rate capability with a high capacity retention ratio of 78% at 50 C and a stable cycling performance over 1200 cycles. Through the ex situ X‐ray diffraction and pair distribution function measurements, it is found that the monoclinic structure with distorted framework is greatly related to the high Na content. The electronic structure studies by density functional theory (DFT) calculation demonstrate that NiHCF‐3 deformation promotes the framework conductivity and improves the electrochemical activity of Fe, which results in an ultrahigh‐rate performance of monoclinic phase. Furthermore, the high‐quality monoclinic (NiHCF‐3) exhibits excellent compatibility with both hard carbon and NaTi2(PO4)3 anodes in full cells, which shows great prospects for the application in the large‐scale energy storage systems. A performance optimization induced by the structure distortion caused by Na content is described. The high‐Na‐content monoclinic nickel hexacyanoferrate exhibits a large specific capacity of 85.7 mAh g−1 at 0.1 C, a high rate capability of 66.2 mAh g−1 at 50 C, and a long cycling life of 1200 cycles without apparent decay.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201803158</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9509-3785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-01, Vol.9 (4), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2170294682
source Wiley
subjects Cathodes
Crystallization
crystallization‐controlled synthesis
Deformation
Density functional theory
Distribution functions
Electronic structure
Energy storage
high‐rate capability
Nickel
Pigments
Prussian blue analogs
Sodium-ion batteries
Storage systems
structure distortion
X-ray diffraction
title Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High‐Performance Cathode for Na‐Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20Distortion%20Induced%20Monoclinic%20Nickel%20Hexacyanoferrate%20as%20High%E2%80%90Performance%20Cathode%20for%20Na%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Xu,%20Yue&rft.date=2019-01-24&rft.volume=9&rft.issue=4&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201803158&rft_dat=%3Cproquest_cross%3E2170294682%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2170294682&rft_id=info:pmid/&rfr_iscdi=true