Loading…
Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High‐Performance Cathode for Na‐Ion Batteries
Prussian blue analogs with an open framework are ideal cathodes for Na‐ion batteries. A superior high‐rate and highly stable monoclinic nickel hexacyanoferrate (NiHCF‐3) is synthesized via a facile one‐step crystallization‐controlled co‐precipitation method. It gives a high specific capacity of 85.7...
Saved in:
Published in: | Advanced energy materials 2019-01, Vol.9 (4), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3 |
container_end_page | n/a |
container_issue | 4 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 9 |
creator | Xu, Yue Wan, Jing Huang, Li Ou, Mingyang Fan, Chenyang Wei, Peng Peng, Jian Liu, Yi Qiu, Yuegang Sun, Xueping Fang, Chun Li, Qing Han, Jiantao Huang, Yunhui Alonso, José Antonio Zhao, Yusheng |
description | Prussian blue analogs with an open framework are ideal cathodes for Na‐ion batteries. A superior high‐rate and highly stable monoclinic nickel hexacyanoferrate (NiHCF‐3) is synthesized via a facile one‐step crystallization‐controlled co‐precipitation method. It gives a high specific capacity of 85.7 mAh g−1, nearly to its theoretical value. It also exhibits an excellent rate capability with a high capacity retention ratio of 78% at 50 C and a stable cycling performance over 1200 cycles. Through the ex situ X‐ray diffraction and pair distribution function measurements, it is found that the monoclinic structure with distorted framework is greatly related to the high Na content. The electronic structure studies by density functional theory (DFT) calculation demonstrate that NiHCF‐3 deformation promotes the framework conductivity and improves the electrochemical activity of Fe, which results in an ultrahigh‐rate performance of monoclinic phase. Furthermore, the high‐quality monoclinic (NiHCF‐3) exhibits excellent compatibility with both hard carbon and NaTi2(PO4)3 anodes in full cells, which shows great prospects for the application in the large‐scale energy storage systems.
A performance optimization induced by the structure distortion caused by Na content is described. The high‐Na‐content monoclinic nickel hexacyanoferrate exhibits a large specific capacity of 85.7 mAh g−1 at 0.1 C, a high rate capability of 66.2 mAh g−1 at 50 C, and a long cycling life of 1200 cycles without apparent decay. |
doi_str_mv | 10.1002/aenm.201803158 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2170294682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2170294682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3</originalsourceid><addsrcrecordid>eNqFkM9OAjEQxjdGE4ly9dzE82L_bbd7REQhATRRz5uh7UoRtth2o9x8BJ_RJ3EJBo_OZSYzv--b5EuSC4J7BGN6BaZe9ygmEjOSyaOkQwThqZAcHx9mRk-TbghL3BYvCGask8TH6BsVG2_QjQ3R-Whdjca1bpTRaOpqp1a2tgrNrHo1KzQyH6C2ULvKeA_RIAhoZF8W359fD8ZXzq-hVgYNIC6cNqhdoBm0x3Hreg0xGm9NOE9OKlgF0_3tZ8nz7fBpMEon93fjQX-SKkZymQLPaSa5FJpixilUZC4yVvBC5bnUmlImC1aJXAOZU5EBzVqMyUpzkUsBwM6Sy73vxru3xoRYLl3j6_ZlSUmOacGFpC3V21PKuxC8qcqNt2vw25LgchduuQu3PITbCoq94N2uzPYfuuwPZ9M_7Q_PfH-O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170294682</pqid></control><display><type>article</type><title>Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High‐Performance Cathode for Na‐Ion Batteries</title><source>Wiley</source><creator>Xu, Yue ; Wan, Jing ; Huang, Li ; Ou, Mingyang ; Fan, Chenyang ; Wei, Peng ; Peng, Jian ; Liu, Yi ; Qiu, Yuegang ; Sun, Xueping ; Fang, Chun ; Li, Qing ; Han, Jiantao ; Huang, Yunhui ; Alonso, José Antonio ; Zhao, Yusheng</creator><creatorcontrib>Xu, Yue ; Wan, Jing ; Huang, Li ; Ou, Mingyang ; Fan, Chenyang ; Wei, Peng ; Peng, Jian ; Liu, Yi ; Qiu, Yuegang ; Sun, Xueping ; Fang, Chun ; Li, Qing ; Han, Jiantao ; Huang, Yunhui ; Alonso, José Antonio ; Zhao, Yusheng</creatorcontrib><description>Prussian blue analogs with an open framework are ideal cathodes for Na‐ion batteries. A superior high‐rate and highly stable monoclinic nickel hexacyanoferrate (NiHCF‐3) is synthesized via a facile one‐step crystallization‐controlled co‐precipitation method. It gives a high specific capacity of 85.7 mAh g−1, nearly to its theoretical value. It also exhibits an excellent rate capability with a high capacity retention ratio of 78% at 50 C and a stable cycling performance over 1200 cycles. Through the ex situ X‐ray diffraction and pair distribution function measurements, it is found that the monoclinic structure with distorted framework is greatly related to the high Na content. The electronic structure studies by density functional theory (DFT) calculation demonstrate that NiHCF‐3 deformation promotes the framework conductivity and improves the electrochemical activity of Fe, which results in an ultrahigh‐rate performance of monoclinic phase. Furthermore, the high‐quality monoclinic (NiHCF‐3) exhibits excellent compatibility with both hard carbon and NaTi2(PO4)3 anodes in full cells, which shows great prospects for the application in the large‐scale energy storage systems.
A performance optimization induced by the structure distortion caused by Na content is described. The high‐Na‐content monoclinic nickel hexacyanoferrate exhibits a large specific capacity of 85.7 mAh g−1 at 0.1 C, a high rate capability of 66.2 mAh g−1 at 50 C, and a long cycling life of 1200 cycles without apparent decay.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201803158</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Crystallization ; crystallization‐controlled synthesis ; Deformation ; Density functional theory ; Distribution functions ; Electronic structure ; Energy storage ; high‐rate capability ; Nickel ; Pigments ; Prussian blue analogs ; Sodium-ion batteries ; Storage systems ; structure distortion ; X-ray diffraction</subject><ispartof>Advanced energy materials, 2019-01, Vol.9 (4), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3</citedby><cites>FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3</cites><orcidid>0000-0002-9509-3785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Yue</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Ou, Mingyang</creatorcontrib><creatorcontrib>Fan, Chenyang</creatorcontrib><creatorcontrib>Wei, Peng</creatorcontrib><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Qiu, Yuegang</creatorcontrib><creatorcontrib>Sun, Xueping</creatorcontrib><creatorcontrib>Fang, Chun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Han, Jiantao</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><creatorcontrib>Alonso, José Antonio</creatorcontrib><creatorcontrib>Zhao, Yusheng</creatorcontrib><title>Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High‐Performance Cathode for Na‐Ion Batteries</title><title>Advanced energy materials</title><description>Prussian blue analogs with an open framework are ideal cathodes for Na‐ion batteries. A superior high‐rate and highly stable monoclinic nickel hexacyanoferrate (NiHCF‐3) is synthesized via a facile one‐step crystallization‐controlled co‐precipitation method. It gives a high specific capacity of 85.7 mAh g−1, nearly to its theoretical value. It also exhibits an excellent rate capability with a high capacity retention ratio of 78% at 50 C and a stable cycling performance over 1200 cycles. Through the ex situ X‐ray diffraction and pair distribution function measurements, it is found that the monoclinic structure with distorted framework is greatly related to the high Na content. The electronic structure studies by density functional theory (DFT) calculation demonstrate that NiHCF‐3 deformation promotes the framework conductivity and improves the electrochemical activity of Fe, which results in an ultrahigh‐rate performance of monoclinic phase. Furthermore, the high‐quality monoclinic (NiHCF‐3) exhibits excellent compatibility with both hard carbon and NaTi2(PO4)3 anodes in full cells, which shows great prospects for the application in the large‐scale energy storage systems.
A performance optimization induced by the structure distortion caused by Na content is described. The high‐Na‐content monoclinic nickel hexacyanoferrate exhibits a large specific capacity of 85.7 mAh g−1 at 0.1 C, a high rate capability of 66.2 mAh g−1 at 50 C, and a long cycling life of 1200 cycles without apparent decay.</description><subject>Cathodes</subject><subject>Crystallization</subject><subject>crystallization‐controlled synthesis</subject><subject>Deformation</subject><subject>Density functional theory</subject><subject>Distribution functions</subject><subject>Electronic structure</subject><subject>Energy storage</subject><subject>high‐rate capability</subject><subject>Nickel</subject><subject>Pigments</subject><subject>Prussian blue analogs</subject><subject>Sodium-ion batteries</subject><subject>Storage systems</subject><subject>structure distortion</subject><subject>X-ray diffraction</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OAjEQxjdGE4ly9dzE82L_bbd7REQhATRRz5uh7UoRtth2o9x8BJ_RJ3EJBo_OZSYzv--b5EuSC4J7BGN6BaZe9ygmEjOSyaOkQwThqZAcHx9mRk-TbghL3BYvCGask8TH6BsVG2_QjQ3R-Whdjca1bpTRaOpqp1a2tgrNrHo1KzQyH6C2ULvKeA_RIAhoZF8W359fD8ZXzq-hVgYNIC6cNqhdoBm0x3Hreg0xGm9NOE9OKlgF0_3tZ8nz7fBpMEon93fjQX-SKkZymQLPaSa5FJpixilUZC4yVvBC5bnUmlImC1aJXAOZU5EBzVqMyUpzkUsBwM6Sy73vxru3xoRYLl3j6_ZlSUmOacGFpC3V21PKuxC8qcqNt2vw25LgchduuQu3PITbCoq94N2uzPYfuuwPZ9M_7Q_PfH-O</recordid><startdate>20190124</startdate><enddate>20190124</enddate><creator>Xu, Yue</creator><creator>Wan, Jing</creator><creator>Huang, Li</creator><creator>Ou, Mingyang</creator><creator>Fan, Chenyang</creator><creator>Wei, Peng</creator><creator>Peng, Jian</creator><creator>Liu, Yi</creator><creator>Qiu, Yuegang</creator><creator>Sun, Xueping</creator><creator>Fang, Chun</creator><creator>Li, Qing</creator><creator>Han, Jiantao</creator><creator>Huang, Yunhui</creator><creator>Alonso, José Antonio</creator><creator>Zhao, Yusheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9509-3785</orcidid></search><sort><creationdate>20190124</creationdate><title>Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High‐Performance Cathode for Na‐Ion Batteries</title><author>Xu, Yue ; Wan, Jing ; Huang, Li ; Ou, Mingyang ; Fan, Chenyang ; Wei, Peng ; Peng, Jian ; Liu, Yi ; Qiu, Yuegang ; Sun, Xueping ; Fang, Chun ; Li, Qing ; Han, Jiantao ; Huang, Yunhui ; Alonso, José Antonio ; Zhao, Yusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cathodes</topic><topic>Crystallization</topic><topic>crystallization‐controlled synthesis</topic><topic>Deformation</topic><topic>Density functional theory</topic><topic>Distribution functions</topic><topic>Electronic structure</topic><topic>Energy storage</topic><topic>high‐rate capability</topic><topic>Nickel</topic><topic>Pigments</topic><topic>Prussian blue analogs</topic><topic>Sodium-ion batteries</topic><topic>Storage systems</topic><topic>structure distortion</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yue</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Ou, Mingyang</creatorcontrib><creatorcontrib>Fan, Chenyang</creatorcontrib><creatorcontrib>Wei, Peng</creatorcontrib><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Qiu, Yuegang</creatorcontrib><creatorcontrib>Sun, Xueping</creatorcontrib><creatorcontrib>Fang, Chun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Han, Jiantao</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><creatorcontrib>Alonso, José Antonio</creatorcontrib><creatorcontrib>Zhao, Yusheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yue</au><au>Wan, Jing</au><au>Huang, Li</au><au>Ou, Mingyang</au><au>Fan, Chenyang</au><au>Wei, Peng</au><au>Peng, Jian</au><au>Liu, Yi</au><au>Qiu, Yuegang</au><au>Sun, Xueping</au><au>Fang, Chun</au><au>Li, Qing</au><au>Han, Jiantao</au><au>Huang, Yunhui</au><au>Alonso, José Antonio</au><au>Zhao, Yusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High‐Performance Cathode for Na‐Ion Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2019-01-24</date><risdate>2019</risdate><volume>9</volume><issue>4</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Prussian blue analogs with an open framework are ideal cathodes for Na‐ion batteries. A superior high‐rate and highly stable monoclinic nickel hexacyanoferrate (NiHCF‐3) is synthesized via a facile one‐step crystallization‐controlled co‐precipitation method. It gives a high specific capacity of 85.7 mAh g−1, nearly to its theoretical value. It also exhibits an excellent rate capability with a high capacity retention ratio of 78% at 50 C and a stable cycling performance over 1200 cycles. Through the ex situ X‐ray diffraction and pair distribution function measurements, it is found that the monoclinic structure with distorted framework is greatly related to the high Na content. The electronic structure studies by density functional theory (DFT) calculation demonstrate that NiHCF‐3 deformation promotes the framework conductivity and improves the electrochemical activity of Fe, which results in an ultrahigh‐rate performance of monoclinic phase. Furthermore, the high‐quality monoclinic (NiHCF‐3) exhibits excellent compatibility with both hard carbon and NaTi2(PO4)3 anodes in full cells, which shows great prospects for the application in the large‐scale energy storage systems.
A performance optimization induced by the structure distortion caused by Na content is described. The high‐Na‐content monoclinic nickel hexacyanoferrate exhibits a large specific capacity of 85.7 mAh g−1 at 0.1 C, a high rate capability of 66.2 mAh g−1 at 50 C, and a long cycling life of 1200 cycles without apparent decay.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201803158</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9509-3785</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2019-01, Vol.9 (4), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2170294682 |
source | Wiley |
subjects | Cathodes Crystallization crystallization‐controlled synthesis Deformation Density functional theory Distribution functions Electronic structure Energy storage high‐rate capability Nickel Pigments Prussian blue analogs Sodium-ion batteries Storage systems structure distortion X-ray diffraction |
title | Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High‐Performance Cathode for Na‐Ion Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20Distortion%20Induced%20Monoclinic%20Nickel%20Hexacyanoferrate%20as%20High%E2%80%90Performance%20Cathode%20for%20Na%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Xu,%20Yue&rft.date=2019-01-24&rft.volume=9&rft.issue=4&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201803158&rft_dat=%3Cproquest_cross%3E2170294682%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3178-a47258486d20342af1b653949c778dd223893f67da1b265a2503438fd46786aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2170294682&rft_id=info:pmid/&rfr_iscdi=true |