Loading…

A conceptual framework for discrete inverse problems in geophysics

In geophysics, inverse modelling can be applied to a wide range of goals, including, for instance, mapping the distribution of rock physical parameters in applied geophysics and calibrating models to forecast the behaviour of natural systems in hydrology, meteorology and climatology. A common, thoro...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-08
Main Authors: Giudici, Mauro, Baratelli, Fulvia, Cattaneo, Laura, Comunian, Alessandro, De Filippis, Giovanna, Durante, Cinzia, Giacobbo, Francesca, Inzoli, Silvia, Mele, Mauro, Vassena, Chiara
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Giudici, Mauro
Baratelli, Fulvia
Cattaneo, Laura
Comunian, Alessandro
De Filippis, Giovanna
Durante, Cinzia
Giacobbo, Francesca
Inzoli, Silvia
Mele, Mauro
Vassena, Chiara
description In geophysics, inverse modelling can be applied to a wide range of goals, including, for instance, mapping the distribution of rock physical parameters in applied geophysics and calibrating models to forecast the behaviour of natural systems in hydrology, meteorology and climatology. A common, thorough conceptual framework to define inverse problems and to discuss their basic properties in a complete way is still lacking. The main goal of this paper is to propose a step forward toward such a framework, focussing on the discrete inverse problems, that are used in practical applications. The relevance of information and measurements (real world data) for the definition of the calibration target and of the objective function is discussed, in particular with reference to the Bayesian approach. Identifiability of model parameters, posedness (uniqueness and stability) and conditioning of the inverse problems are formally defined. The proposed framework is so general as to permit rigorous definitions and treatment of sensitivity analysis, adjoint-state approach, multi-objective optimization.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2170777761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2170777761</sourcerecordid><originalsourceid>FETCH-proquest_journals_21707777613</originalsourceid><addsrcrecordid>eNqNikEOgjAQRRsTE4lyh0lck5RWwK0ajQdwT7AMChZaZ0Dj7e3CA_g2P3n_zUSktE6T7UaphYiZOymlyguVZToS-x0YNxj041RZaKjq8e3oAY0jqFs2hCNCO7yQGMGTu1rsOQi4ofP3D7eGV2LeVJYx_u1SrE_Hy-GchPw5IY9l5yYawlWqtJBFIE_1f9UX-1U6bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170777761</pqid></control><display><type>article</type><title>A conceptual framework for discrete inverse problems in geophysics</title><source>Publicly Available Content Database</source><creator>Giudici, Mauro ; Baratelli, Fulvia ; Cattaneo, Laura ; Comunian, Alessandro ; De Filippis, Giovanna ; Durante, Cinzia ; Giacobbo, Francesca ; Inzoli, Silvia ; Mele, Mauro ; Vassena, Chiara</creator><creatorcontrib>Giudici, Mauro ; Baratelli, Fulvia ; Cattaneo, Laura ; Comunian, Alessandro ; De Filippis, Giovanna ; Durante, Cinzia ; Giacobbo, Francesca ; Inzoli, Silvia ; Mele, Mauro ; Vassena, Chiara</creatorcontrib><description>In geophysics, inverse modelling can be applied to a wide range of goals, including, for instance, mapping the distribution of rock physical parameters in applied geophysics and calibrating models to forecast the behaviour of natural systems in hydrology, meteorology and climatology. A common, thorough conceptual framework to define inverse problems and to discuss their basic properties in a complete way is still lacking. The main goal of this paper is to propose a step forward toward such a framework, focussing on the discrete inverse problems, that are used in practical applications. The relevance of information and measurements (real world data) for the definition of the calibration target and of the objective function is discussed, in particular with reference to the Bayesian approach. Identifiability of model parameters, posedness (uniqueness and stability) and conditioning of the inverse problems are formally defined. The proposed framework is so general as to permit rigorous definitions and treatment of sensitivity analysis, adjoint-state approach, multi-objective optimization.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atmospheric models ; Bayesian analysis ; Climatology ; Geophysics ; Hydrologic models ; Hydrology ; Inverse problems ; Mapping ; Meteorology ; Multiple objective analysis ; Parameter identification ; Physical properties ; Sensitivity analysis</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2170777761?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Giudici, Mauro</creatorcontrib><creatorcontrib>Baratelli, Fulvia</creatorcontrib><creatorcontrib>Cattaneo, Laura</creatorcontrib><creatorcontrib>Comunian, Alessandro</creatorcontrib><creatorcontrib>De Filippis, Giovanna</creatorcontrib><creatorcontrib>Durante, Cinzia</creatorcontrib><creatorcontrib>Giacobbo, Francesca</creatorcontrib><creatorcontrib>Inzoli, Silvia</creatorcontrib><creatorcontrib>Mele, Mauro</creatorcontrib><creatorcontrib>Vassena, Chiara</creatorcontrib><title>A conceptual framework for discrete inverse problems in geophysics</title><title>arXiv.org</title><description>In geophysics, inverse modelling can be applied to a wide range of goals, including, for instance, mapping the distribution of rock physical parameters in applied geophysics and calibrating models to forecast the behaviour of natural systems in hydrology, meteorology and climatology. A common, thorough conceptual framework to define inverse problems and to discuss their basic properties in a complete way is still lacking. The main goal of this paper is to propose a step forward toward such a framework, focussing on the discrete inverse problems, that are used in practical applications. The relevance of information and measurements (real world data) for the definition of the calibration target and of the objective function is discussed, in particular with reference to the Bayesian approach. Identifiability of model parameters, posedness (uniqueness and stability) and conditioning of the inverse problems are formally defined. The proposed framework is so general as to permit rigorous definitions and treatment of sensitivity analysis, adjoint-state approach, multi-objective optimization.</description><subject>Atmospheric models</subject><subject>Bayesian analysis</subject><subject>Climatology</subject><subject>Geophysics</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Inverse problems</subject><subject>Mapping</subject><subject>Meteorology</subject><subject>Multiple objective analysis</subject><subject>Parameter identification</subject><subject>Physical properties</subject><subject>Sensitivity analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEOgjAQRRsTE4lyh0lck5RWwK0ajQdwT7AMChZaZ0Dj7e3CA_g2P3n_zUSktE6T7UaphYiZOymlyguVZToS-x0YNxj041RZaKjq8e3oAY0jqFs2hCNCO7yQGMGTu1rsOQi4ofP3D7eGV2LeVJYx_u1SrE_Hy-GchPw5IY9l5yYawlWqtJBFIE_1f9UX-1U6bQ</recordid><startdate>20210826</startdate><enddate>20210826</enddate><creator>Giudici, Mauro</creator><creator>Baratelli, Fulvia</creator><creator>Cattaneo, Laura</creator><creator>Comunian, Alessandro</creator><creator>De Filippis, Giovanna</creator><creator>Durante, Cinzia</creator><creator>Giacobbo, Francesca</creator><creator>Inzoli, Silvia</creator><creator>Mele, Mauro</creator><creator>Vassena, Chiara</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210826</creationdate><title>A conceptual framework for discrete inverse problems in geophysics</title><author>Giudici, Mauro ; Baratelli, Fulvia ; Cattaneo, Laura ; Comunian, Alessandro ; De Filippis, Giovanna ; Durante, Cinzia ; Giacobbo, Francesca ; Inzoli, Silvia ; Mele, Mauro ; Vassena, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21707777613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric models</topic><topic>Bayesian analysis</topic><topic>Climatology</topic><topic>Geophysics</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Inverse problems</topic><topic>Mapping</topic><topic>Meteorology</topic><topic>Multiple objective analysis</topic><topic>Parameter identification</topic><topic>Physical properties</topic><topic>Sensitivity analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Giudici, Mauro</creatorcontrib><creatorcontrib>Baratelli, Fulvia</creatorcontrib><creatorcontrib>Cattaneo, Laura</creatorcontrib><creatorcontrib>Comunian, Alessandro</creatorcontrib><creatorcontrib>De Filippis, Giovanna</creatorcontrib><creatorcontrib>Durante, Cinzia</creatorcontrib><creatorcontrib>Giacobbo, Francesca</creatorcontrib><creatorcontrib>Inzoli, Silvia</creatorcontrib><creatorcontrib>Mele, Mauro</creatorcontrib><creatorcontrib>Vassena, Chiara</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giudici, Mauro</au><au>Baratelli, Fulvia</au><au>Cattaneo, Laura</au><au>Comunian, Alessandro</au><au>De Filippis, Giovanna</au><au>Durante, Cinzia</au><au>Giacobbo, Francesca</au><au>Inzoli, Silvia</au><au>Mele, Mauro</au><au>Vassena, Chiara</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A conceptual framework for discrete inverse problems in geophysics</atitle><jtitle>arXiv.org</jtitle><date>2021-08-26</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In geophysics, inverse modelling can be applied to a wide range of goals, including, for instance, mapping the distribution of rock physical parameters in applied geophysics and calibrating models to forecast the behaviour of natural systems in hydrology, meteorology and climatology. A common, thorough conceptual framework to define inverse problems and to discuss their basic properties in a complete way is still lacking. The main goal of this paper is to propose a step forward toward such a framework, focussing on the discrete inverse problems, that are used in practical applications. The relevance of information and measurements (real world data) for the definition of the calibration target and of the objective function is discussed, in particular with reference to the Bayesian approach. Identifiability of model parameters, posedness (uniqueness and stability) and conditioning of the inverse problems are formally defined. The proposed framework is so general as to permit rigorous definitions and treatment of sensitivity analysis, adjoint-state approach, multi-objective optimization.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2170777761
source Publicly Available Content Database
subjects Atmospheric models
Bayesian analysis
Climatology
Geophysics
Hydrologic models
Hydrology
Inverse problems
Mapping
Meteorology
Multiple objective analysis
Parameter identification
Physical properties
Sensitivity analysis
title A conceptual framework for discrete inverse problems in geophysics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20conceptual%20framework%20for%20discrete%20inverse%20problems%20in%20geophysics&rft.jtitle=arXiv.org&rft.au=Giudici,%20Mauro&rft.date=2021-08-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2170777761%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21707777613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2170777761&rft_id=info:pmid/&rfr_iscdi=true