Loading…
A conceptual framework for discrete inverse problems in geophysics
In geophysics, inverse modelling can be applied to a wide range of goals, including, for instance, mapping the distribution of rock physical parameters in applied geophysics and calibrating models to forecast the behaviour of natural systems in hydrology, meteorology and climatology. A common, thoro...
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Giudici, Mauro Baratelli, Fulvia Cattaneo, Laura Comunian, Alessandro De Filippis, Giovanna Durante, Cinzia Giacobbo, Francesca Inzoli, Silvia Mele, Mauro Vassena, Chiara |
description | In geophysics, inverse modelling can be applied to a wide range of goals, including, for instance, mapping the distribution of rock physical parameters in applied geophysics and calibrating models to forecast the behaviour of natural systems in hydrology, meteorology and climatology. A common, thorough conceptual framework to define inverse problems and to discuss their basic properties in a complete way is still lacking. The main goal of this paper is to propose a step forward toward such a framework, focussing on the discrete inverse problems, that are used in practical applications. The relevance of information and measurements (real world data) for the definition of the calibration target and of the objective function is discussed, in particular with reference to the Bayesian approach. Identifiability of model parameters, posedness (uniqueness and stability) and conditioning of the inverse problems are formally defined. The proposed framework is so general as to permit rigorous definitions and treatment of sensitivity analysis, adjoint-state approach, multi-objective optimization. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2170777761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2170777761</sourcerecordid><originalsourceid>FETCH-proquest_journals_21707777613</originalsourceid><addsrcrecordid>eNqNikEOgjAQRRsTE4lyh0lck5RWwK0ajQdwT7AMChZaZ0Dj7e3CA_g2P3n_zUSktE6T7UaphYiZOymlyguVZToS-x0YNxj041RZaKjq8e3oAY0jqFs2hCNCO7yQGMGTu1rsOQi4ofP3D7eGV2LeVJYx_u1SrE_Hy-GchPw5IY9l5yYawlWqtJBFIE_1f9UX-1U6bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170777761</pqid></control><display><type>article</type><title>A conceptual framework for discrete inverse problems in geophysics</title><source>Publicly Available Content Database</source><creator>Giudici, Mauro ; Baratelli, Fulvia ; Cattaneo, Laura ; Comunian, Alessandro ; De Filippis, Giovanna ; Durante, Cinzia ; Giacobbo, Francesca ; Inzoli, Silvia ; Mele, Mauro ; Vassena, Chiara</creator><creatorcontrib>Giudici, Mauro ; Baratelli, Fulvia ; Cattaneo, Laura ; Comunian, Alessandro ; De Filippis, Giovanna ; Durante, Cinzia ; Giacobbo, Francesca ; Inzoli, Silvia ; Mele, Mauro ; Vassena, Chiara</creatorcontrib><description>In geophysics, inverse modelling can be applied to a wide range of goals, including, for instance, mapping the distribution of rock physical parameters in applied geophysics and calibrating models to forecast the behaviour of natural systems in hydrology, meteorology and climatology. A common, thorough conceptual framework to define inverse problems and to discuss their basic properties in a complete way is still lacking. The main goal of this paper is to propose a step forward toward such a framework, focussing on the discrete inverse problems, that are used in practical applications. The relevance of information and measurements (real world data) for the definition of the calibration target and of the objective function is discussed, in particular with reference to the Bayesian approach. Identifiability of model parameters, posedness (uniqueness and stability) and conditioning of the inverse problems are formally defined. The proposed framework is so general as to permit rigorous definitions and treatment of sensitivity analysis, adjoint-state approach, multi-objective optimization.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atmospheric models ; Bayesian analysis ; Climatology ; Geophysics ; Hydrologic models ; Hydrology ; Inverse problems ; Mapping ; Meteorology ; Multiple objective analysis ; Parameter identification ; Physical properties ; Sensitivity analysis</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2170777761?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Giudici, Mauro</creatorcontrib><creatorcontrib>Baratelli, Fulvia</creatorcontrib><creatorcontrib>Cattaneo, Laura</creatorcontrib><creatorcontrib>Comunian, Alessandro</creatorcontrib><creatorcontrib>De Filippis, Giovanna</creatorcontrib><creatorcontrib>Durante, Cinzia</creatorcontrib><creatorcontrib>Giacobbo, Francesca</creatorcontrib><creatorcontrib>Inzoli, Silvia</creatorcontrib><creatorcontrib>Mele, Mauro</creatorcontrib><creatorcontrib>Vassena, Chiara</creatorcontrib><title>A conceptual framework for discrete inverse problems in geophysics</title><title>arXiv.org</title><description>In geophysics, inverse modelling can be applied to a wide range of goals, including, for instance, mapping the distribution of rock physical parameters in applied geophysics and calibrating models to forecast the behaviour of natural systems in hydrology, meteorology and climatology. A common, thorough conceptual framework to define inverse problems and to discuss their basic properties in a complete way is still lacking. The main goal of this paper is to propose a step forward toward such a framework, focussing on the discrete inverse problems, that are used in practical applications. The relevance of information and measurements (real world data) for the definition of the calibration target and of the objective function is discussed, in particular with reference to the Bayesian approach. Identifiability of model parameters, posedness (uniqueness and stability) and conditioning of the inverse problems are formally defined. The proposed framework is so general as to permit rigorous definitions and treatment of sensitivity analysis, adjoint-state approach, multi-objective optimization.</description><subject>Atmospheric models</subject><subject>Bayesian analysis</subject><subject>Climatology</subject><subject>Geophysics</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Inverse problems</subject><subject>Mapping</subject><subject>Meteorology</subject><subject>Multiple objective analysis</subject><subject>Parameter identification</subject><subject>Physical properties</subject><subject>Sensitivity analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEOgjAQRRsTE4lyh0lck5RWwK0ajQdwT7AMChZaZ0Dj7e3CA_g2P3n_zUSktE6T7UaphYiZOymlyguVZToS-x0YNxj041RZaKjq8e3oAY0jqFs2hCNCO7yQGMGTu1rsOQi4ofP3D7eGV2LeVJYx_u1SrE_Hy-GchPw5IY9l5yYawlWqtJBFIE_1f9UX-1U6bQ</recordid><startdate>20210826</startdate><enddate>20210826</enddate><creator>Giudici, Mauro</creator><creator>Baratelli, Fulvia</creator><creator>Cattaneo, Laura</creator><creator>Comunian, Alessandro</creator><creator>De Filippis, Giovanna</creator><creator>Durante, Cinzia</creator><creator>Giacobbo, Francesca</creator><creator>Inzoli, Silvia</creator><creator>Mele, Mauro</creator><creator>Vassena, Chiara</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210826</creationdate><title>A conceptual framework for discrete inverse problems in geophysics</title><author>Giudici, Mauro ; Baratelli, Fulvia ; Cattaneo, Laura ; Comunian, Alessandro ; De Filippis, Giovanna ; Durante, Cinzia ; Giacobbo, Francesca ; Inzoli, Silvia ; Mele, Mauro ; Vassena, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21707777613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric models</topic><topic>Bayesian analysis</topic><topic>Climatology</topic><topic>Geophysics</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Inverse problems</topic><topic>Mapping</topic><topic>Meteorology</topic><topic>Multiple objective analysis</topic><topic>Parameter identification</topic><topic>Physical properties</topic><topic>Sensitivity analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Giudici, Mauro</creatorcontrib><creatorcontrib>Baratelli, Fulvia</creatorcontrib><creatorcontrib>Cattaneo, Laura</creatorcontrib><creatorcontrib>Comunian, Alessandro</creatorcontrib><creatorcontrib>De Filippis, Giovanna</creatorcontrib><creatorcontrib>Durante, Cinzia</creatorcontrib><creatorcontrib>Giacobbo, Francesca</creatorcontrib><creatorcontrib>Inzoli, Silvia</creatorcontrib><creatorcontrib>Mele, Mauro</creatorcontrib><creatorcontrib>Vassena, Chiara</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giudici, Mauro</au><au>Baratelli, Fulvia</au><au>Cattaneo, Laura</au><au>Comunian, Alessandro</au><au>De Filippis, Giovanna</au><au>Durante, Cinzia</au><au>Giacobbo, Francesca</au><au>Inzoli, Silvia</au><au>Mele, Mauro</au><au>Vassena, Chiara</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A conceptual framework for discrete inverse problems in geophysics</atitle><jtitle>arXiv.org</jtitle><date>2021-08-26</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In geophysics, inverse modelling can be applied to a wide range of goals, including, for instance, mapping the distribution of rock physical parameters in applied geophysics and calibrating models to forecast the behaviour of natural systems in hydrology, meteorology and climatology. A common, thorough conceptual framework to define inverse problems and to discuss their basic properties in a complete way is still lacking. The main goal of this paper is to propose a step forward toward such a framework, focussing on the discrete inverse problems, that are used in practical applications. The relevance of information and measurements (real world data) for the definition of the calibration target and of the objective function is discussed, in particular with reference to the Bayesian approach. Identifiability of model parameters, posedness (uniqueness and stability) and conditioning of the inverse problems are formally defined. The proposed framework is so general as to permit rigorous definitions and treatment of sensitivity analysis, adjoint-state approach, multi-objective optimization.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2170777761 |
source | Publicly Available Content Database |
subjects | Atmospheric models Bayesian analysis Climatology Geophysics Hydrologic models Hydrology Inverse problems Mapping Meteorology Multiple objective analysis Parameter identification Physical properties Sensitivity analysis |
title | A conceptual framework for discrete inverse problems in geophysics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20conceptual%20framework%20for%20discrete%20inverse%20problems%20in%20geophysics&rft.jtitle=arXiv.org&rft.au=Giudici,%20Mauro&rft.date=2021-08-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2170777761%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21707777613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2170777761&rft_id=info:pmid/&rfr_iscdi=true |