Loading…

Study on damage behavior of carbide tool for milling difficult-to-machine material

Water chamber head is an important component of nuclear power unit, and the main material is 508 III steel of difficult-to-machine material, which has the characteristics of high hardness, high strength, high plasticity and high profile shrinkage, etc. During the milling process, the tool is subject...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2019-01, Vol.233 (2), p.735-747
Main Authors: Cheng, Yao-Nan, Nie, Wan-Ying, Guan, Rui, Jia, Wei-Kun, Yan, Fu-gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Water chamber head is an important component of nuclear power unit, and the main material is 508 III steel of difficult-to-machine material, which has the characteristics of high hardness, high strength, high plasticity and high profile shrinkage, etc. During the milling process, the tool is subjected to the cyclic impact load, which make cutting force and cutting heat change violent and occurrence of tool damage failure accelerate. In this paper, the damage behavior of carbide tool for milling difficult-to-machine material is studied first, and then field experiment was carried out on 508 III steel material, tool failure modes were analyzed, which include impact damage and fatigue fracture, and the failure theory and the crack propagation of carbide material were investigated in the process of tool damage. Then, the impact damage model of carbide tool is established based on the classical strength theory, and the critical condition of impact damage is determined according to simulation analysis. Finally, the theoretical model of carbide tool fatigue life is established and the tool fatigue limit is analyzed. Theoretical basis and technical support are provided for the tool failure mechanisms analysis, life prediction, parameter optimization, tool design and development aspects during the study.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406218761507