Loading…
Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint
A nonconvex quadratically constrained quadratic programming (QCQP) with one constraint is usually solved via a dual SDP problem, or Moré’s algorithm based on iteratively solving linear systems. In this work we introduce an algorithm for QCQP that requires finding just one eigenpair of a generalized...
Saved in:
Published in: | Mathematical programming 2019-01, Vol.173 (1-2), p.79-116 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-998e3beba0af8921cfc161f42d9a86b65a71974d077a46d2133ad4c7ec25c83c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-998e3beba0af8921cfc161f42d9a86b65a71974d077a46d2133ad4c7ec25c83c3 |
container_end_page | 116 |
container_issue | 1-2 |
container_start_page | 79 |
container_title | Mathematical programming |
container_volume | 173 |
creator | Adachi, Satoru Nakatsukasa, Yuji |
description | A nonconvex quadratically constrained quadratic programming (QCQP) with one constraint is usually solved via a dual SDP problem, or Moré’s algorithm based on iteratively solving linear systems. In this work we introduce an algorithm for QCQP that requires finding just one eigenpair of a generalized eigenvalue problem, and involves no outer iterations other than the (usually black-box) iterations for computing the eigenpair. Numerical experiments illustrate the efficiency and accuracy of our algorithm. We also analyze the QCQP solution extensively, including difficult cases, and show that the canonical form of a matrix pair gives a complete classification of the QCQP in terms of boundedness and attainability, and explain how to obtain a global solution whenever it exists. |
doi_str_mv | 10.1007/s10107-017-1206-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2171995078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2171995078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-998e3beba0af8921cfc161f42d9a86b65a71974d077a46d2133ad4c7ec25c83c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMsptkj1LqBxS1oOeQzWbrlm1Sk63af--WFTx5GmZ43pfhIeQS4RoB5E1CQJAUUFJkIKg6IhPMuaC5yMUxmQCwghYC4ZScpbQGAORKTcjTvF05_2m6naOVSa7OTLcKse3fN5nxw-ZNt09typoQMx-8Df7TfWfL2fIl-xqoLHiXDcfUR9P6_pycNKZL7uJ3Tsnb3fx19kAXz_ePs9sFtbwoe1qWyvHKVQZMo0qGtrEosMlZXRolKlEYiaXMa5DS5KJmyLmpcyudZYVV3PIpuRp7tzF87Fzq9Trs4vBr0gyHbFmAVAOFI2VjSCm6Rm9juzFxrxH0QZsetelBmz5o04cMGzNpYP3Kxb_m_0M__QJvvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2171995078</pqid></control><display><type>article</type><title>Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Adachi, Satoru ; Nakatsukasa, Yuji</creator><creatorcontrib>Adachi, Satoru ; Nakatsukasa, Yuji</creatorcontrib><description>A nonconvex quadratically constrained quadratic programming (QCQP) with one constraint is usually solved via a dual SDP problem, or Moré’s algorithm based on iteratively solving linear systems. In this work we introduce an algorithm for QCQP that requires finding just one eigenpair of a generalized eigenvalue problem, and involves no outer iterations other than the (usually black-box) iterations for computing the eigenpair. Numerical experiments illustrate the efficiency and accuracy of our algorithm. We also analyze the QCQP solution extensively, including difficult cases, and show that the canonical form of a matrix pair gives a complete classification of the QCQP in terms of boundedness and attainability, and explain how to obtain a global solution whenever it exists.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-017-1206-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Eigenvalues ; Full Length Paper ; Linear systems ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Quadratic programming ; Theoretical</subject><ispartof>Mathematical programming, 2019-01, Vol.173 (1-2), p.79-116</ispartof><rights>The Author(s) 2017</rights><rights>Mathematical Programming is a copyright of Springer, (2017). All Rights Reserved. © 2017. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-998e3beba0af8921cfc161f42d9a86b65a71974d077a46d2133ad4c7ec25c83c3</citedby><cites>FETCH-LOGICAL-c359t-998e3beba0af8921cfc161f42d9a86b65a71974d077a46d2133ad4c7ec25c83c3</cites><orcidid>0000-0001-7911-1501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2171995078?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,44342</link.rule.ids></links><search><creatorcontrib>Adachi, Satoru</creatorcontrib><creatorcontrib>Nakatsukasa, Yuji</creatorcontrib><title>Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>A nonconvex quadratically constrained quadratic programming (QCQP) with one constraint is usually solved via a dual SDP problem, or Moré’s algorithm based on iteratively solving linear systems. In this work we introduce an algorithm for QCQP that requires finding just one eigenpair of a generalized eigenvalue problem, and involves no outer iterations other than the (usually black-box) iterations for computing the eigenpair. Numerical experiments illustrate the efficiency and accuracy of our algorithm. We also analyze the QCQP solution extensively, including difficult cases, and show that the canonical form of a matrix pair gives a complete classification of the QCQP in terms of boundedness and attainability, and explain how to obtain a global solution whenever it exists.</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Eigenvalues</subject><subject>Full Length Paper</subject><subject>Linear systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Quadratic programming</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMsptkj1LqBxS1oOeQzWbrlm1Sk63af--WFTx5GmZ43pfhIeQS4RoB5E1CQJAUUFJkIKg6IhPMuaC5yMUxmQCwghYC4ZScpbQGAORKTcjTvF05_2m6naOVSa7OTLcKse3fN5nxw-ZNt09typoQMx-8Df7TfWfL2fIl-xqoLHiXDcfUR9P6_pycNKZL7uJ3Tsnb3fx19kAXz_ePs9sFtbwoe1qWyvHKVQZMo0qGtrEosMlZXRolKlEYiaXMa5DS5KJmyLmpcyudZYVV3PIpuRp7tzF87Fzq9Trs4vBr0gyHbFmAVAOFI2VjSCm6Rm9juzFxrxH0QZsetelBmz5o04cMGzNpYP3Kxb_m_0M__QJvvA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Adachi, Satoru</creator><creator>Nakatsukasa, Yuji</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7911-1501</orcidid></search><sort><creationdate>20190101</creationdate><title>Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint</title><author>Adachi, Satoru ; Nakatsukasa, Yuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-998e3beba0af8921cfc161f42d9a86b65a71974d077a46d2133ad4c7ec25c83c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Eigenvalues</topic><topic>Full Length Paper</topic><topic>Linear systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Quadratic programming</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adachi, Satoru</creatorcontrib><creatorcontrib>Nakatsukasa, Yuji</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adachi, Satoru</au><au>Nakatsukasa, Yuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>173</volume><issue>1-2</issue><spage>79</spage><epage>116</epage><pages>79-116</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>A nonconvex quadratically constrained quadratic programming (QCQP) with one constraint is usually solved via a dual SDP problem, or Moré’s algorithm based on iteratively solving linear systems. In this work we introduce an algorithm for QCQP that requires finding just one eigenpair of a generalized eigenvalue problem, and involves no outer iterations other than the (usually black-box) iterations for computing the eigenpair. Numerical experiments illustrate the efficiency and accuracy of our algorithm. We also analyze the QCQP solution extensively, including difficult cases, and show that the canonical form of a matrix pair gives a complete classification of the QCQP in terms of boundedness and attainability, and explain how to obtain a global solution whenever it exists.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-017-1206-8</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0001-7911-1501</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2019-01, Vol.173 (1-2), p.79-116 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_journals_2171995078 |
source | EBSCOhost Business Source Ultimate; ABI/INFORM Global; Springer Link |
subjects | Algorithms Calculus of Variations and Optimal Control Optimization Combinatorics Eigenvalues Full Length Paper Linear systems Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Quadratic programming Theoretical |
title | Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue-based%20algorithm%20and%20analysis%20for%20nonconvex%20QCQP%20with%20one%20constraint&rft.jtitle=Mathematical%20programming&rft.au=Adachi,%20Satoru&rft.date=2019-01-01&rft.volume=173&rft.issue=1-2&rft.spage=79&rft.epage=116&rft.pages=79-116&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-017-1206-8&rft_dat=%3Cproquest_cross%3E2171995078%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-998e3beba0af8921cfc161f42d9a86b65a71974d077a46d2133ad4c7ec25c83c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2171995078&rft_id=info:pmid/&rfr_iscdi=true |