Loading…
On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending
An analytical research is developed using the averaging technique of composites for the macroscopic behaviors of porous shape memory alloy (SMA) beam with different porosity under pure bending. The whole material is regarded as a composite beam of porous SMA and dense SMA, in which the component fra...
Saved in:
Published in: | Journal of materials research 2019-01, Vol.34 (2), p.282-289 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3 |
container_end_page | 289 |
container_issue | 2 |
container_start_page | 282 |
container_title | Journal of materials research |
container_volume | 34 |
creator | Zhang, Yanan Liu, Bingfei Du, Chunzhi Zhou, Rui |
description | An analytical research is developed using the averaging technique of composites for the macroscopic behaviors of porous shape memory alloy (SMA) beam with different porosity under pure bending. The whole material is regarded as a composite beam of porous SMA and dense SMA, in which the component fractions of the porous SMA show gradient changes over geometric dimension. To get the theoretical solution of such material under pure bending, the Mises yield theory and the ideal elastoplastic model are used to describe the phase transition of the material. The macroscopic behaviors of the porous SMAs beam with different porosity are then simulated using the averaging technique of composites. Examples for a porous SMA beam with gradient porosity from 0 to 50% considering the tension compression asymmetry of the SMAs are then supplied; the results show that after transformation the stress distribution in the whole material is lower than in the case of the pure elastic gradient porous materials, and for different part of the SMA with different porosity shows different strength characters. |
doi_str_mv | 10.1557/jmr.2018.423 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172107187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_423</cupid><sourcerecordid>2172107187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3</originalsourceid><addsrcrecordid>eNqF0MtKxDAUBuAgCo6jOx8g4NbW3JqmSxm8wcBsdCeEtD29DNOmJq3StzfjDLgSFyEQvvw5-RG6piSmSZLebTsXM0JVLBg_QQtGhIgSzuQpWhClRMQyKs7RhfdbQmhCUrFA75sejw3gHBrz2Vrnsa3wYJ2dPPaNGQB30Fk3Y7Pb2Tkw0-Gvdmxw7UzZQj_-YN-OM576EhweJrdP68u2ry_RWWV2Hq6O-xK9PT68rp6j9ebpZXW_jgouyBgVRBW5YlzKClTBODGcgColJ4yBDOe5kKBoKZks0yoDQSEN3wyLZFxlhi_RzSF3cPZjAj_qrZ1cH57ULDBKUqrSoG4PqggDeweVHlzbGTdrSvS-Px360_v-dOgv8OjAfWB9De439A8fH-NNl7u2rOGfC9_ehID-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172107187</pqid></control><display><type>article</type><title>On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Zhang, Yanan ; Liu, Bingfei ; Du, Chunzhi ; Zhou, Rui</creator><creatorcontrib>Zhang, Yanan ; Liu, Bingfei ; Du, Chunzhi ; Zhou, Rui</creatorcontrib><description>An analytical research is developed using the averaging technique of composites for the macroscopic behaviors of porous shape memory alloy (SMA) beam with different porosity under pure bending. The whole material is regarded as a composite beam of porous SMA and dense SMA, in which the component fractions of the porous SMA show gradient changes over geometric dimension. To get the theoretical solution of such material under pure bending, the Mises yield theory and the ideal elastoplastic model are used to describe the phase transition of the material. The macroscopic behaviors of the porous SMAs beam with different porosity are then simulated using the averaging technique of composites. Examples for a porous SMA beam with gradient porosity from 0 to 50% considering the tension compression asymmetry of the SMAs are then supplied; the results show that after transformation the stress distribution in the whole material is lower than in the case of the pure elastic gradient porous materials, and for different part of the SMA with different porosity shows different strength characters.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.423</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Applied and Technical Physics ; Biocompatibility ; Biomaterials ; Composite beams ; Composite materials ; Computer simulation ; Elastoplasticity ; Inorganic Chemistry ; Martensitic transformations ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Nanotechnology ; Phase transitions ; Plasma sintering ; Porosity ; Porous materials ; Product design ; Regression analysis ; Shape memory alloys ; Stents ; Stress concentration ; Stress distribution ; Tissues</subject><ispartof>Journal of materials research, 2019-01, Vol.34 (2), p.282-289</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3</citedby><cites>FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3</cites><orcidid>0000-0002-6308-661X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2172107187/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2172107187?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Zhang, Yanan</creatorcontrib><creatorcontrib>Liu, Bingfei</creatorcontrib><creatorcontrib>Du, Chunzhi</creatorcontrib><creatorcontrib>Zhou, Rui</creatorcontrib><title>On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>An analytical research is developed using the averaging technique of composites for the macroscopic behaviors of porous shape memory alloy (SMA) beam with different porosity under pure bending. The whole material is regarded as a composite beam of porous SMA and dense SMA, in which the component fractions of the porous SMA show gradient changes over geometric dimension. To get the theoretical solution of such material under pure bending, the Mises yield theory and the ideal elastoplastic model are used to describe the phase transition of the material. The macroscopic behaviors of the porous SMAs beam with different porosity are then simulated using the averaging technique of composites. Examples for a porous SMA beam with gradient porosity from 0 to 50% considering the tension compression asymmetry of the SMAs are then supplied; the results show that after transformation the stress distribution in the whole material is lower than in the case of the pure elastic gradient porous materials, and for different part of the SMA with different porosity shows different strength characters.</description><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Composite beams</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Elastoplasticity</subject><subject>Inorganic Chemistry</subject><subject>Martensitic transformations</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Plasma sintering</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Product design</subject><subject>Regression analysis</subject><subject>Shape memory alloys</subject><subject>Stents</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Tissues</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqF0MtKxDAUBuAgCo6jOx8g4NbW3JqmSxm8wcBsdCeEtD29DNOmJq3StzfjDLgSFyEQvvw5-RG6piSmSZLebTsXM0JVLBg_QQtGhIgSzuQpWhClRMQyKs7RhfdbQmhCUrFA75sejw3gHBrz2Vrnsa3wYJ2dPPaNGQB30Fk3Y7Pb2Tkw0-Gvdmxw7UzZQj_-YN-OM576EhweJrdP68u2ry_RWWV2Hq6O-xK9PT68rp6j9ebpZXW_jgouyBgVRBW5YlzKClTBODGcgColJ4yBDOe5kKBoKZks0yoDQSEN3wyLZFxlhi_RzSF3cPZjAj_qrZ1cH57ULDBKUqrSoG4PqggDeweVHlzbGTdrSvS-Px360_v-dOgv8OjAfWB9De439A8fH-NNl7u2rOGfC9_ehID-</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Zhang, Yanan</creator><creator>Liu, Bingfei</creator><creator>Du, Chunzhi</creator><creator>Zhou, Rui</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6308-661X</orcidid></search><sort><creationdate>20190128</creationdate><title>On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending</title><author>Zhang, Yanan ; Liu, Bingfei ; Du, Chunzhi ; Zhou, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Composite beams</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Elastoplasticity</topic><topic>Inorganic Chemistry</topic><topic>Martensitic transformations</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Plasma sintering</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Product design</topic><topic>Regression analysis</topic><topic>Shape memory alloys</topic><topic>Stents</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yanan</creatorcontrib><creatorcontrib>Liu, Bingfei</creatorcontrib><creatorcontrib>Du, Chunzhi</creatorcontrib><creatorcontrib>Zhou, Rui</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yanan</au><au>Liu, Bingfei</au><au>Du, Chunzhi</au><au>Zhou, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2019-01-28</date><risdate>2019</risdate><volume>34</volume><issue>2</issue><spage>282</spage><epage>289</epage><pages>282-289</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>An analytical research is developed using the averaging technique of composites for the macroscopic behaviors of porous shape memory alloy (SMA) beam with different porosity under pure bending. The whole material is regarded as a composite beam of porous SMA and dense SMA, in which the component fractions of the porous SMA show gradient changes over geometric dimension. To get the theoretical solution of such material under pure bending, the Mises yield theory and the ideal elastoplastic model are used to describe the phase transition of the material. The macroscopic behaviors of the porous SMAs beam with different porosity are then simulated using the averaging technique of composites. Examples for a porous SMA beam with gradient porosity from 0 to 50% considering the tension compression asymmetry of the SMAs are then supplied; the results show that after transformation the stress distribution in the whole material is lower than in the case of the pure elastic gradient porous materials, and for different part of the SMA with different porosity shows different strength characters.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2018.423</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6308-661X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2019-01, Vol.34 (2), p.282-289 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2172107187 |
source | ABI/INFORM Global; Springer Link |
subjects | Alloys Applied and Technical Physics Biocompatibility Biomaterials Composite beams Composite materials Computer simulation Elastoplasticity Inorganic Chemistry Martensitic transformations Materials Engineering Materials research Materials Science Mechanical properties Nanotechnology Phase transitions Plasma sintering Porosity Porous materials Product design Regression analysis Shape memory alloys Stents Stress concentration Stress distribution Tissues |
title | On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20behaviors%20of%20porous%20shape%20memory%20alloy%20beam%20with%20gradient%20porosity%20under%20pure%20bending&rft.jtitle=Journal%20of%20materials%20research&rft.au=Zhang,%20Yanan&rft.date=2019-01-28&rft.volume=34&rft.issue=2&rft.spage=282&rft.epage=289&rft.pages=282-289&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.423&rft_dat=%3Cproquest_cross%3E2172107187%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172107187&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2018_423&rfr_iscdi=true |