Loading…

On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending

An analytical research is developed using the averaging technique of composites for the macroscopic behaviors of porous shape memory alloy (SMA) beam with different porosity under pure bending. The whole material is regarded as a composite beam of porous SMA and dense SMA, in which the component fra...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2019-01, Vol.34 (2), p.282-289
Main Authors: Zhang, Yanan, Liu, Bingfei, Du, Chunzhi, Zhou, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3
cites cdi_FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3
container_end_page 289
container_issue 2
container_start_page 282
container_title Journal of materials research
container_volume 34
creator Zhang, Yanan
Liu, Bingfei
Du, Chunzhi
Zhou, Rui
description An analytical research is developed using the averaging technique of composites for the macroscopic behaviors of porous shape memory alloy (SMA) beam with different porosity under pure bending. The whole material is regarded as a composite beam of porous SMA and dense SMA, in which the component fractions of the porous SMA show gradient changes over geometric dimension. To get the theoretical solution of such material under pure bending, the Mises yield theory and the ideal elastoplastic model are used to describe the phase transition of the material. The macroscopic behaviors of the porous SMAs beam with different porosity are then simulated using the averaging technique of composites. Examples for a porous SMA beam with gradient porosity from 0 to 50% considering the tension compression asymmetry of the SMAs are then supplied; the results show that after transformation the stress distribution in the whole material is lower than in the case of the pure elastic gradient porous materials, and for different part of the SMA with different porosity shows different strength characters.
doi_str_mv 10.1557/jmr.2018.423
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172107187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_423</cupid><sourcerecordid>2172107187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3</originalsourceid><addsrcrecordid>eNqF0MtKxDAUBuAgCo6jOx8g4NbW3JqmSxm8wcBsdCeEtD29DNOmJq3StzfjDLgSFyEQvvw5-RG6piSmSZLebTsXM0JVLBg_QQtGhIgSzuQpWhClRMQyKs7RhfdbQmhCUrFA75sejw3gHBrz2Vrnsa3wYJ2dPPaNGQB30Fk3Y7Pb2Tkw0-Gvdmxw7UzZQj_-YN-OM576EhweJrdP68u2ry_RWWV2Hq6O-xK9PT68rp6j9ebpZXW_jgouyBgVRBW5YlzKClTBODGcgColJ4yBDOe5kKBoKZks0yoDQSEN3wyLZFxlhi_RzSF3cPZjAj_qrZ1cH57ULDBKUqrSoG4PqggDeweVHlzbGTdrSvS-Px360_v-dOgv8OjAfWB9De439A8fH-NNl7u2rOGfC9_ehID-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172107187</pqid></control><display><type>article</type><title>On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Zhang, Yanan ; Liu, Bingfei ; Du, Chunzhi ; Zhou, Rui</creator><creatorcontrib>Zhang, Yanan ; Liu, Bingfei ; Du, Chunzhi ; Zhou, Rui</creatorcontrib><description>An analytical research is developed using the averaging technique of composites for the macroscopic behaviors of porous shape memory alloy (SMA) beam with different porosity under pure bending. The whole material is regarded as a composite beam of porous SMA and dense SMA, in which the component fractions of the porous SMA show gradient changes over geometric dimension. To get the theoretical solution of such material under pure bending, the Mises yield theory and the ideal elastoplastic model are used to describe the phase transition of the material. The macroscopic behaviors of the porous SMAs beam with different porosity are then simulated using the averaging technique of composites. Examples for a porous SMA beam with gradient porosity from 0 to 50% considering the tension compression asymmetry of the SMAs are then supplied; the results show that after transformation the stress distribution in the whole material is lower than in the case of the pure elastic gradient porous materials, and for different part of the SMA with different porosity shows different strength characters.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.423</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Applied and Technical Physics ; Biocompatibility ; Biomaterials ; Composite beams ; Composite materials ; Computer simulation ; Elastoplasticity ; Inorganic Chemistry ; Martensitic transformations ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Nanotechnology ; Phase transitions ; Plasma sintering ; Porosity ; Porous materials ; Product design ; Regression analysis ; Shape memory alloys ; Stents ; Stress concentration ; Stress distribution ; Tissues</subject><ispartof>Journal of materials research, 2019-01, Vol.34 (2), p.282-289</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3</citedby><cites>FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3</cites><orcidid>0000-0002-6308-661X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2172107187/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2172107187?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Zhang, Yanan</creatorcontrib><creatorcontrib>Liu, Bingfei</creatorcontrib><creatorcontrib>Du, Chunzhi</creatorcontrib><creatorcontrib>Zhou, Rui</creatorcontrib><title>On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>An analytical research is developed using the averaging technique of composites for the macroscopic behaviors of porous shape memory alloy (SMA) beam with different porosity under pure bending. The whole material is regarded as a composite beam of porous SMA and dense SMA, in which the component fractions of the porous SMA show gradient changes over geometric dimension. To get the theoretical solution of such material under pure bending, the Mises yield theory and the ideal elastoplastic model are used to describe the phase transition of the material. The macroscopic behaviors of the porous SMAs beam with different porosity are then simulated using the averaging technique of composites. Examples for a porous SMA beam with gradient porosity from 0 to 50% considering the tension compression asymmetry of the SMAs are then supplied; the results show that after transformation the stress distribution in the whole material is lower than in the case of the pure elastic gradient porous materials, and for different part of the SMA with different porosity shows different strength characters.</description><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Composite beams</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Elastoplasticity</subject><subject>Inorganic Chemistry</subject><subject>Martensitic transformations</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Plasma sintering</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Product design</subject><subject>Regression analysis</subject><subject>Shape memory alloys</subject><subject>Stents</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Tissues</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqF0MtKxDAUBuAgCo6jOx8g4NbW3JqmSxm8wcBsdCeEtD29DNOmJq3StzfjDLgSFyEQvvw5-RG6piSmSZLebTsXM0JVLBg_QQtGhIgSzuQpWhClRMQyKs7RhfdbQmhCUrFA75sejw3gHBrz2Vrnsa3wYJ2dPPaNGQB30Fk3Y7Pb2Tkw0-Gvdmxw7UzZQj_-YN-OM576EhweJrdP68u2ry_RWWV2Hq6O-xK9PT68rp6j9ebpZXW_jgouyBgVRBW5YlzKClTBODGcgColJ4yBDOe5kKBoKZks0yoDQSEN3wyLZFxlhi_RzSF3cPZjAj_qrZ1cH57ULDBKUqrSoG4PqggDeweVHlzbGTdrSvS-Px360_v-dOgv8OjAfWB9De439A8fH-NNl7u2rOGfC9_ehID-</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Zhang, Yanan</creator><creator>Liu, Bingfei</creator><creator>Du, Chunzhi</creator><creator>Zhou, Rui</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6308-661X</orcidid></search><sort><creationdate>20190128</creationdate><title>On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending</title><author>Zhang, Yanan ; Liu, Bingfei ; Du, Chunzhi ; Zhou, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Composite beams</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Elastoplasticity</topic><topic>Inorganic Chemistry</topic><topic>Martensitic transformations</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Plasma sintering</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Product design</topic><topic>Regression analysis</topic><topic>Shape memory alloys</topic><topic>Stents</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yanan</creatorcontrib><creatorcontrib>Liu, Bingfei</creatorcontrib><creatorcontrib>Du, Chunzhi</creatorcontrib><creatorcontrib>Zhou, Rui</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yanan</au><au>Liu, Bingfei</au><au>Du, Chunzhi</au><au>Zhou, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2019-01-28</date><risdate>2019</risdate><volume>34</volume><issue>2</issue><spage>282</spage><epage>289</epage><pages>282-289</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>An analytical research is developed using the averaging technique of composites for the macroscopic behaviors of porous shape memory alloy (SMA) beam with different porosity under pure bending. The whole material is regarded as a composite beam of porous SMA and dense SMA, in which the component fractions of the porous SMA show gradient changes over geometric dimension. To get the theoretical solution of such material under pure bending, the Mises yield theory and the ideal elastoplastic model are used to describe the phase transition of the material. The macroscopic behaviors of the porous SMAs beam with different porosity are then simulated using the averaging technique of composites. Examples for a porous SMA beam with gradient porosity from 0 to 50% considering the tension compression asymmetry of the SMAs are then supplied; the results show that after transformation the stress distribution in the whole material is lower than in the case of the pure elastic gradient porous materials, and for different part of the SMA with different porosity shows different strength characters.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2018.423</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6308-661X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2019-01, Vol.34 (2), p.282-289
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2172107187
source ABI/INFORM Global; Springer Link
subjects Alloys
Applied and Technical Physics
Biocompatibility
Biomaterials
Composite beams
Composite materials
Computer simulation
Elastoplasticity
Inorganic Chemistry
Martensitic transformations
Materials Engineering
Materials research
Materials Science
Mechanical properties
Nanotechnology
Phase transitions
Plasma sintering
Porosity
Porous materials
Product design
Regression analysis
Shape memory alloys
Stents
Stress concentration
Stress distribution
Tissues
title On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20behaviors%20of%20porous%20shape%20memory%20alloy%20beam%20with%20gradient%20porosity%20under%20pure%20bending&rft.jtitle=Journal%20of%20materials%20research&rft.au=Zhang,%20Yanan&rft.date=2019-01-28&rft.volume=34&rft.issue=2&rft.spage=282&rft.epage=289&rft.pages=282-289&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.423&rft_dat=%3Cproquest_cross%3E2172107187%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-c08cb82366fe8c230a30e8d63022e6236b46e81d626d7f9e41e720172009389a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172107187&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2018_423&rfr_iscdi=true