Loading…
Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots
Graphene modulators based on surface plasmonic waveguides enable a strong interaction between light and graphene because great electric field enhancement occurs in the sub-wavelength region. However, a tight field confinement will cause a large metal absorption of light. Thus, graphene modulator bas...
Saved in:
Published in: | Plasmonics (Norwell, Mass.) Mass.), 2019-02, Vol.14 (1), p.133-138 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene modulators based on surface plasmonic waveguides enable a strong interaction between light and graphene because great electric field enhancement occurs in the sub-wavelength region. However, a tight field confinement will cause a large metal absorption of light. Thus, graphene modulator base on hybrid plasmonic waveguide has a tradeoff between the propagation loss and the modulation depth. Here, we achieved a good balance between them by designing and optimizing an electro-optic modulator based on hybrid plasmonic waveguide with four graphene layers. The structure of the waveguide is metal/insulator/Si/insulator/metal. The modulation depth and the propagation loss of the modulator are 0.524 and 0.05 dB/μm respectively, which make a relatively high figure of merit about 10.5. Also the obtained modulation bandwidth and power consumption are 150 GHz and 0.607 pJ/bit, respectively. |
---|---|
ISSN: | 1557-1955 1557-1963 |
DOI: | 10.1007/s11468-018-0785-4 |