Loading…
Magnetohydrodynamic Model of a 3D Printer for Steel Melt
The main problems of the development of 3D printers for machine engineering are related to low rate of printing and low quality of fabricated items. The problems can be solved using a new principle of high-efficiency 3D printing for steel melt based on the compression of the melt jet by magnetic fie...
Saved in:
Published in: | Technical physics 2018-12, Vol.63 (12), p.1730-1735 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-f0c12a7d5a0a3a7b96f7ab0a77c39078ada9ce06899755af9e15a5b9ab812e953 |
container_end_page | 1735 |
container_issue | 12 |
container_start_page | 1730 |
container_title | Technical physics |
container_volume | 63 |
creator | Oshurko, V. B. Mandel’, A. M. Sharts, A. A. Solomakho, K. G. |
description | The main problems of the development of 3D printers for machine engineering are related to low rate of printing and low quality of fabricated items. The problems can be solved using a new principle of high-efficiency 3D printing for steel melt based on the compression of the melt jet by magnetic field of flowing current and an increase in the crystallization temperature. Under certain conditions, the heat liberation of current can be compensated for using alternative processes. Ranges of parameters at which the effect can be implemented are determined. |
doi_str_mv | 10.1134/S1063784218120137 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2172291930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A571548369</galeid><sourcerecordid>A571548369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-f0c12a7d5a0a3a7b96f7ab0a77c39078ada9ce06899755af9e15a5b9ab812e953</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmPwA7hV4txhJ0vTHKfxKTGBNDhXbuuMTlsz0u6wf0-mInFAyAdb9vv4S4hrhAmimt4uETJl8qnEHCWgMidihGAhzbTUp8c4U-mxfi4uum4NgJjrbCTyBa1a7v3noQ6-PrS0bapk4WveJN4llKi75C00bc8hcT4ky55jZcGb_lKcOdp0fPXjx-Lj4f59_pS-vD4-z2cvaaXA9KmDCiWZWhOQIlPazBkqgYyplAWTU022Yshya43W5CyjJl1aKuMdbLUai5uh7y74rz13fbH2-9DGkYVEI6VFqyCqJoNqRRsumtb5PlAVreZ4kG_ZNTE_0wb1NFeZjQAOQBV81wV2xS40WwqHAqE4frT489HIyIHporZdcfhd5X_oG5ysdVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172291930</pqid></control><display><type>article</type><title>Magnetohydrodynamic Model of a 3D Printer for Steel Melt</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Oshurko, V. B. ; Mandel’, A. M. ; Sharts, A. A. ; Solomakho, K. G.</creator><creatorcontrib>Oshurko, V. B. ; Mandel’, A. M. ; Sharts, A. A. ; Solomakho, K. G.</creatorcontrib><description>The main problems of the development of 3D printers for machine engineering are related to low rate of printing and low quality of fabricated items. The problems can be solved using a new principle of high-efficiency 3D printing for steel melt based on the compression of the melt jet by magnetic field of flowing current and an increase in the crystallization temperature. Under certain conditions, the heat liberation of current can be compensated for using alternative processes. Ranges of parameters at which the effect can be implemented are determined.</description><identifier>ISSN: 1063-7842</identifier><identifier>EISSN: 1090-6525</identifier><identifier>DOI: 10.1134/S1063784218120137</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>3-D printers ; 3D printing ; Classical and Continuum Physics ; Computational fluid dynamics ; Crystallization ; Fluid flow ; Gases and Liquids ; Industrial engineering ; Magnetic fields ; Magnetohydrodynamics ; Physics ; Physics and Astronomy ; Polymer industry ; Polymers ; Powders (Particulate matter) ; Printers ; Process parameters ; Sintering ; Steel ; Steel industry ; Three dimensional printing ; Universities and colleges</subject><ispartof>Technical physics, 2018-12, Vol.63 (12), p.1730-1735</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-f0c12a7d5a0a3a7b96f7ab0a77c39078ada9ce06899755af9e15a5b9ab812e953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Oshurko, V. B.</creatorcontrib><creatorcontrib>Mandel’, A. M.</creatorcontrib><creatorcontrib>Sharts, A. A.</creatorcontrib><creatorcontrib>Solomakho, K. G.</creatorcontrib><title>Magnetohydrodynamic Model of a 3D Printer for Steel Melt</title><title>Technical physics</title><addtitle>Tech. Phys</addtitle><description>The main problems of the development of 3D printers for machine engineering are related to low rate of printing and low quality of fabricated items. The problems can be solved using a new principle of high-efficiency 3D printing for steel melt based on the compression of the melt jet by magnetic field of flowing current and an increase in the crystallization temperature. Under certain conditions, the heat liberation of current can be compensated for using alternative processes. Ranges of parameters at which the effect can be implemented are determined.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Crystallization</subject><subject>Fluid flow</subject><subject>Gases and Liquids</subject><subject>Industrial engineering</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer industry</subject><subject>Polymers</subject><subject>Powders (Particulate matter)</subject><subject>Printers</subject><subject>Process parameters</subject><subject>Sintering</subject><subject>Steel</subject><subject>Steel industry</subject><subject>Three dimensional printing</subject><subject>Universities and colleges</subject><issn>1063-7842</issn><issn>1090-6525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmPwA7hV4txhJ0vTHKfxKTGBNDhXbuuMTlsz0u6wf0-mInFAyAdb9vv4S4hrhAmimt4uETJl8qnEHCWgMidihGAhzbTUp8c4U-mxfi4uum4NgJjrbCTyBa1a7v3noQ6-PrS0bapk4WveJN4llKi75C00bc8hcT4ky55jZcGb_lKcOdp0fPXjx-Lj4f59_pS-vD4-z2cvaaXA9KmDCiWZWhOQIlPazBkqgYyplAWTU022Yshya43W5CyjJl1aKuMdbLUai5uh7y74rz13fbH2-9DGkYVEI6VFqyCqJoNqRRsumtb5PlAVreZ4kG_ZNTE_0wb1NFeZjQAOQBV81wV2xS40WwqHAqE4frT489HIyIHporZdcfhd5X_oG5ysdVY</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Oshurko, V. B.</creator><creator>Mandel’, A. M.</creator><creator>Sharts, A. A.</creator><creator>Solomakho, K. G.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Magnetohydrodynamic Model of a 3D Printer for Steel Melt</title><author>Oshurko, V. B. ; Mandel’, A. M. ; Sharts, A. A. ; Solomakho, K. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-f0c12a7d5a0a3a7b96f7ab0a77c39078ada9ce06899755af9e15a5b9ab812e953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Crystallization</topic><topic>Fluid flow</topic><topic>Gases and Liquids</topic><topic>Industrial engineering</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer industry</topic><topic>Polymers</topic><topic>Powders (Particulate matter)</topic><topic>Printers</topic><topic>Process parameters</topic><topic>Sintering</topic><topic>Steel</topic><topic>Steel industry</topic><topic>Three dimensional printing</topic><topic>Universities and colleges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oshurko, V. B.</creatorcontrib><creatorcontrib>Mandel’, A. M.</creatorcontrib><creatorcontrib>Sharts, A. A.</creatorcontrib><creatorcontrib>Solomakho, K. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oshurko, V. B.</au><au>Mandel’, A. M.</au><au>Sharts, A. A.</au><au>Solomakho, K. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamic Model of a 3D Printer for Steel Melt</atitle><jtitle>Technical physics</jtitle><stitle>Tech. Phys</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>63</volume><issue>12</issue><spage>1730</spage><epage>1735</epage><pages>1730-1735</pages><issn>1063-7842</issn><eissn>1090-6525</eissn><abstract>The main problems of the development of 3D printers for machine engineering are related to low rate of printing and low quality of fabricated items. The problems can be solved using a new principle of high-efficiency 3D printing for steel melt based on the compression of the melt jet by magnetic field of flowing current and an increase in the crystallization temperature. Under certain conditions, the heat liberation of current can be compensated for using alternative processes. Ranges of parameters at which the effect can be implemented are determined.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063784218120137</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7842 |
ispartof | Technical physics, 2018-12, Vol.63 (12), p.1730-1735 |
issn | 1063-7842 1090-6525 |
language | eng |
recordid | cdi_proquest_journals_2172291930 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | 3-D printers 3D printing Classical and Continuum Physics Computational fluid dynamics Crystallization Fluid flow Gases and Liquids Industrial engineering Magnetic fields Magnetohydrodynamics Physics Physics and Astronomy Polymer industry Polymers Powders (Particulate matter) Printers Process parameters Sintering Steel Steel industry Three dimensional printing Universities and colleges |
title | Magnetohydrodynamic Model of a 3D Printer for Steel Melt |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamic%20Model%20of%20a%203D%20Printer%20for%20Steel%20Melt&rft.jtitle=Technical%20physics&rft.au=Oshurko,%20V.%20B.&rft.date=2018-12-01&rft.volume=63&rft.issue=12&rft.spage=1730&rft.epage=1735&rft.pages=1730-1735&rft.issn=1063-7842&rft.eissn=1090-6525&rft_id=info:doi/10.1134/S1063784218120137&rft_dat=%3Cgale_proqu%3EA571548369%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-f0c12a7d5a0a3a7b96f7ab0a77c39078ada9ce06899755af9e15a5b9ab812e953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172291930&rft_id=info:pmid/&rft_galeid=A571548369&rfr_iscdi=true |