Loading…

Evaluating the websites of academic departments through SEO criteria: a hesitant fuzzy linguistic MCDM approach

Search Engine Optimization (SEO) is the process of managing web content in a manner that elevates page rankings in search engines. Among other sectors, academic world is one of the number-one categories for search based on the percentage of web traffic generated through search engine referrals. Howe...

Full description

Saved in:
Bibliographic Details
Published in:The Artificial intelligence review 2020-02, Vol.53 (2), p.875-905
Main Authors: Özkan, Barış, Özceylan, Eren, Kabak, Mehmet, Dağdeviren, Metin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-eb5306e761c65ddd614595cd1d304155b4ebe78115a4aeba7a2434cf5b1288373
cites cdi_FETCH-LOGICAL-c406t-eb5306e761c65ddd614595cd1d304155b4ebe78115a4aeba7a2434cf5b1288373
container_end_page 905
container_issue 2
container_start_page 875
container_title The Artificial intelligence review
container_volume 53
creator Özkan, Barış
Özceylan, Eren
Kabak, Mehmet
Dağdeviren, Metin
description Search Engine Optimization (SEO) is the process of managing web content in a manner that elevates page rankings in search engines. Among other sectors, academic world is one of the number-one categories for search based on the percentage of web traffic generated through search engine referrals. However, SEO includes a number of factors grouped into two as ‘on page’ and ‘off page.’ To obtain maximum benefit from SEO, relevant factors/criteria should be considered using multi-criteria decision making (MCDM) methods. The focus of this paper is to consider SEO criteria evaluation as a MCDM problem in which the criteria are in different priority levels and the criteria values take the form of hesitant fuzzy linguistic term sets to facilitate the elicitation of information in hesitate situations. A three-step solution approach is developed: (i) determination of 21 SEO criteria, such as page loading time, page size and meta-keyword (ii) prioritizing the criteria using hesitant fuzzy analytic hierarchy process, and (iii) ranking 70 Turkish websites of the industrial engineering departments using Technique for Order Preference by Similarity to Ideal Solution. The results show that trust flow and XML sitemap are the determinant criteria among others. Using the proposed method, web designers can approach SEO from weighted criteria perspective.
doi_str_mv 10.1007/s10462-019-09681-z
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2172483770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718215182</galeid><sourcerecordid>A718215182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-eb5306e761c65ddd614595cd1d304155b4ebe78115a4aeba7a2434cf5b1288373</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhq2KSl0oL9CTJc6hHseOs72hZWmRQBzanq2JM9kN2k0W2wGxT9-hQeqtF1safd-Mx78QX0BdglLuawJlKl0oWBZqWdVQHD-IBVhXFo7rJ2KhdLUsdK3hkzhN6VEpZbUpF2JcP-NuwtwPG5m3JF-oSX2mJMdOYsCW9n2QLR0w5j0NOTEUx2mzlT_XDzJERmOP3yTKLbGHQ5bddDy-yh03nPqU2b5fXd9LPBziiGH7WXzscJfo_P0-E79v1r9WP4q7h--3q6u7IhhV5YIaW6qKXAWhsm3bVmDs0oYW2lIZsLYx1JCrASwapAYd8jYmdLYBXdelK8_ExdyXxz5NlLJ_HKc48EivwWnDjFNMXc7UBnfk-6Ebc-St3_ceB-p6rl854I-zfLCgZyHEMaVInT_Efo_x1YPyb0n4OQnPSfi_SfgjS-UsJYaHDcV_b_mP9QdXT4y7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172483770</pqid></control><display><type>article</type><title>Evaluating the websites of academic departments through SEO criteria: a hesitant fuzzy linguistic MCDM approach</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>Social Science Premium Collection</source><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><source>Library &amp; Information Science Collection</source><creator>Özkan, Barış ; Özceylan, Eren ; Kabak, Mehmet ; Dağdeviren, Metin</creator><creatorcontrib>Özkan, Barış ; Özceylan, Eren ; Kabak, Mehmet ; Dağdeviren, Metin</creatorcontrib><description>Search Engine Optimization (SEO) is the process of managing web content in a manner that elevates page rankings in search engines. Among other sectors, academic world is one of the number-one categories for search based on the percentage of web traffic generated through search engine referrals. However, SEO includes a number of factors grouped into two as ‘on page’ and ‘off page.’ To obtain maximum benefit from SEO, relevant factors/criteria should be considered using multi-criteria decision making (MCDM) methods. The focus of this paper is to consider SEO criteria evaluation as a MCDM problem in which the criteria are in different priority levels and the criteria values take the form of hesitant fuzzy linguistic term sets to facilitate the elicitation of information in hesitate situations. A three-step solution approach is developed: (i) determination of 21 SEO criteria, such as page loading time, page size and meta-keyword (ii) prioritizing the criteria using hesitant fuzzy analytic hierarchy process, and (iii) ranking 70 Turkish websites of the industrial engineering departments using Technique for Order Preference by Similarity to Ideal Solution. The results show that trust flow and XML sitemap are the determinant criteria among others. Using the proposed method, web designers can approach SEO from weighted criteria perspective.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-019-09681-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analytic hierarchy process ; Artificial Intelligence ; Computer Science ; Content management systems ; Decision making ; Design and construction ; Fuzzy logic ; Fuzzy sets ; Industrial engineering ; Internet/Web search services ; Marketing ; Multiple criteria decision making ; Multiple criterion ; Optimization ; Rankings ; Search engine optimization ; Search engines ; Usability testing ; Web sites ; Websites</subject><ispartof>The Artificial intelligence review, 2020-02, Vol.53 (2), p.875-905</ispartof><rights>Springer Nature B.V. 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Artificial Intelligence Review is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-eb5306e761c65ddd614595cd1d304155b4ebe78115a4aeba7a2434cf5b1288373</citedby><cites>FETCH-LOGICAL-c406t-eb5306e761c65ddd614595cd1d304155b4ebe78115a4aeba7a2434cf5b1288373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2172483770/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2172483770?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11686,21379,21392,27303,27922,27923,33609,33904,34133,36058,43731,43890,44361,73991,74179,74665</link.rule.ids></links><search><creatorcontrib>Özkan, Barış</creatorcontrib><creatorcontrib>Özceylan, Eren</creatorcontrib><creatorcontrib>Kabak, Mehmet</creatorcontrib><creatorcontrib>Dağdeviren, Metin</creatorcontrib><title>Evaluating the websites of academic departments through SEO criteria: a hesitant fuzzy linguistic MCDM approach</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>Search Engine Optimization (SEO) is the process of managing web content in a manner that elevates page rankings in search engines. Among other sectors, academic world is one of the number-one categories for search based on the percentage of web traffic generated through search engine referrals. However, SEO includes a number of factors grouped into two as ‘on page’ and ‘off page.’ To obtain maximum benefit from SEO, relevant factors/criteria should be considered using multi-criteria decision making (MCDM) methods. The focus of this paper is to consider SEO criteria evaluation as a MCDM problem in which the criteria are in different priority levels and the criteria values take the form of hesitant fuzzy linguistic term sets to facilitate the elicitation of information in hesitate situations. A three-step solution approach is developed: (i) determination of 21 SEO criteria, such as page loading time, page size and meta-keyword (ii) prioritizing the criteria using hesitant fuzzy analytic hierarchy process, and (iii) ranking 70 Turkish websites of the industrial engineering departments using Technique for Order Preference by Similarity to Ideal Solution. The results show that trust flow and XML sitemap are the determinant criteria among others. Using the proposed method, web designers can approach SEO from weighted criteria perspective.</description><subject>Analytic hierarchy process</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Content management systems</subject><subject>Decision making</subject><subject>Design and construction</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Industrial engineering</subject><subject>Internet/Web search services</subject><subject>Marketing</subject><subject>Multiple criteria decision making</subject><subject>Multiple criterion</subject><subject>Optimization</subject><subject>Rankings</subject><subject>Search engine optimization</subject><subject>Search engines</subject><subject>Usability testing</subject><subject>Web sites</subject><subject>Websites</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CNYFK</sourceid><sourceid>F2A</sourceid><sourceid>M0C</sourceid><sourceid>M1O</sourceid><recordid>eNp9kcFO3DAQhq2KSl0oL9CTJc6hHseOs72hZWmRQBzanq2JM9kN2k0W2wGxT9-hQeqtF1safd-Mx78QX0BdglLuawJlKl0oWBZqWdVQHD-IBVhXFo7rJ2KhdLUsdK3hkzhN6VEpZbUpF2JcP-NuwtwPG5m3JF-oSX2mJMdOYsCW9n2QLR0w5j0NOTEUx2mzlT_XDzJERmOP3yTKLbGHQ5bddDy-yh03nPqU2b5fXd9LPBziiGH7WXzscJfo_P0-E79v1r9WP4q7h--3q6u7IhhV5YIaW6qKXAWhsm3bVmDs0oYW2lIZsLYx1JCrASwapAYd8jYmdLYBXdelK8_ExdyXxz5NlLJ_HKc48EivwWnDjFNMXc7UBnfk-6Ebc-St3_ceB-p6rl854I-zfLCgZyHEMaVInT_Efo_x1YPyb0n4OQnPSfi_SfgjS-UsJYaHDcV_b_mP9QdXT4y7</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Özkan, Barış</creator><creator>Özceylan, Eren</creator><creator>Kabak, Mehmet</creator><creator>Dağdeviren, Metin</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20200201</creationdate><title>Evaluating the websites of academic departments through SEO criteria: a hesitant fuzzy linguistic MCDM approach</title><author>Özkan, Barış ; Özceylan, Eren ; Kabak, Mehmet ; Dağdeviren, Metin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-eb5306e761c65ddd614595cd1d304155b4ebe78115a4aeba7a2434cf5b1288373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytic hierarchy process</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Content management systems</topic><topic>Decision making</topic><topic>Design and construction</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Industrial engineering</topic><topic>Internet/Web search services</topic><topic>Marketing</topic><topic>Multiple criteria decision making</topic><topic>Multiple criterion</topic><topic>Optimization</topic><topic>Rankings</topic><topic>Search engine optimization</topic><topic>Search engines</topic><topic>Usability testing</topic><topic>Web sites</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Özkan, Barış</creatorcontrib><creatorcontrib>Özceylan, Eren</creatorcontrib><creatorcontrib>Kabak, Mehmet</creatorcontrib><creatorcontrib>Dağdeviren, Metin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Özkan, Barış</au><au>Özceylan, Eren</au><au>Kabak, Mehmet</au><au>Dağdeviren, Metin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the websites of academic departments through SEO criteria: a hesitant fuzzy linguistic MCDM approach</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>53</volume><issue>2</issue><spage>875</spage><epage>905</epage><pages>875-905</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Search Engine Optimization (SEO) is the process of managing web content in a manner that elevates page rankings in search engines. Among other sectors, academic world is one of the number-one categories for search based on the percentage of web traffic generated through search engine referrals. However, SEO includes a number of factors grouped into two as ‘on page’ and ‘off page.’ To obtain maximum benefit from SEO, relevant factors/criteria should be considered using multi-criteria decision making (MCDM) methods. The focus of this paper is to consider SEO criteria evaluation as a MCDM problem in which the criteria are in different priority levels and the criteria values take the form of hesitant fuzzy linguistic term sets to facilitate the elicitation of information in hesitate situations. A three-step solution approach is developed: (i) determination of 21 SEO criteria, such as page loading time, page size and meta-keyword (ii) prioritizing the criteria using hesitant fuzzy analytic hierarchy process, and (iii) ranking 70 Turkish websites of the industrial engineering departments using Technique for Order Preference by Similarity to Ideal Solution. The results show that trust flow and XML sitemap are the determinant criteria among others. Using the proposed method, web designers can approach SEO from weighted criteria perspective.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-019-09681-z</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-2821
ispartof The Artificial intelligence review, 2020-02, Vol.53 (2), p.875-905
issn 0269-2821
1573-7462
language eng
recordid cdi_proquest_journals_2172483770
source Library & Information Science Abstracts (LISA); Social Science Premium Collection; ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List; Library & Information Science Collection
subjects Analytic hierarchy process
Artificial Intelligence
Computer Science
Content management systems
Decision making
Design and construction
Fuzzy logic
Fuzzy sets
Industrial engineering
Internet/Web search services
Marketing
Multiple criteria decision making
Multiple criterion
Optimization
Rankings
Search engine optimization
Search engines
Usability testing
Web sites
Websites
title Evaluating the websites of academic departments through SEO criteria: a hesitant fuzzy linguistic MCDM approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20websites%20of%20academic%20departments%20through%20SEO%20criteria:%20a%20hesitant%20fuzzy%20linguistic%20MCDM%20approach&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=%C3%96zkan,%20Bar%C4%B1%C5%9F&rft.date=2020-02-01&rft.volume=53&rft.issue=2&rft.spage=875&rft.epage=905&rft.pages=875-905&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-019-09681-z&rft_dat=%3Cgale_proqu%3EA718215182%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-eb5306e761c65ddd614595cd1d304155b4ebe78115a4aeba7a2434cf5b1288373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172483770&rft_id=info:pmid/&rft_galeid=A718215182&rfr_iscdi=true