Loading…

On-sun testing of Miscibility Gap Alloy thermal storage

•An MGA thermal storage block was used to directly absorb concentrated sunlight.•Sensible and latent heat storage was demonstrated over a period of hours.•The material was shown to be quite resistant to rapid changes in incident flux.•The thermal conductivity was found to be 55 W/mK.•Integration of...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy 2019-01, Vol.177, p.657-664
Main Authors: Copus, Mark, Fraser, Benjamin, Reece, Roger, Hands, Stuart, Cuskelly, Dylan, Sugo, Heber, Reed, Samuel, Bradley, James, Post, Alexander, Kisi, Erich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83
cites cdi_FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83
container_end_page 664
container_issue
container_start_page 657
container_title Solar energy
container_volume 177
creator Copus, Mark
Fraser, Benjamin
Reece, Roger
Hands, Stuart
Cuskelly, Dylan
Sugo, Heber
Reed, Samuel
Bradley, James
Post, Alexander
Kisi, Erich
description •An MGA thermal storage block was used to directly absorb concentrated sunlight.•Sensible and latent heat storage was demonstrated over a period of hours.•The material was shown to be quite resistant to rapid changes in incident flux.•The thermal conductivity was found to be 55 W/mK.•Integration of solar receiver, storage and heat exchanger appears possible. The ability of a C-Zn Miscibility Gap Alloy (MGA) material to operate as a combined solar receiver and storage was investigated. MGA thermal energy storage materials comprise metallic PCM particles embedded within a conducting metal or semi-metal matrix to form a macroscopically solid combined latent heat/sensible heat storage material. A receiver containing 4 × 1L MGA storage modules was mounted on a solar concentrating dish. The storage material was directly illuminated by concentrated solar radiation at a flux of approximately 105 kW/m2, readily attaining surface temperatures of 520–530 °C, well above the phase change temperature of 420 °C. Single step charging led to a state of charge of 80% without exceeding a nominal surface temperature of 530 °C. Cycling on and off sun in the range 460–520 °C was used to achieve a state of 99% charged. Thermal performance of the MGA during solar charging and its discharge by natural cooling is presented and analysed.
doi_str_mv 10.1016/j.solener.2018.11.048
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172645797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X18311484</els_id><sourcerecordid>2172645797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_QVjwvGsm2Wx2T1KKVqHSi4K3kGYnNct2U5Ot0H9vSnv3NId57828j5B7oAVQqB67IvoeBwwFo1AXAAUt6wsygVJCDkzISzKhlNc5bdjXNbmJsaMUJNRyQuRqyON-yEaMoxs2mbfZu4vGrV3vxkO20Lts1vf-kI3fGLa6z-Log97gLbmyuo94d55T8vny_DF_zZerxdt8tswNl9WY161mkpUCW4PUCAHCcqF1axEquW45WGsqKpuK0lJUuuGNZUYi42tuBG1rPiUPp9xd8D_79KTq_D4M6aRiIFlVCtnIpBInlQk-xoBW7YLb6nBQQNWRkerUmZE6MlIAKjFKvqeTD1OFX5e2qToOBlsX0Iyq9e6fhD9eYXHW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172645797</pqid></control><display><type>article</type><title>On-sun testing of Miscibility Gap Alloy thermal storage</title><source>ScienceDirect Freedom Collection</source><creator>Copus, Mark ; Fraser, Benjamin ; Reece, Roger ; Hands, Stuart ; Cuskelly, Dylan ; Sugo, Heber ; Reed, Samuel ; Bradley, James ; Post, Alexander ; Kisi, Erich</creator><creatorcontrib>Copus, Mark ; Fraser, Benjamin ; Reece, Roger ; Hands, Stuart ; Cuskelly, Dylan ; Sugo, Heber ; Reed, Samuel ; Bradley, James ; Post, Alexander ; Kisi, Erich</creatorcontrib><description>•An MGA thermal storage block was used to directly absorb concentrated sunlight.•Sensible and latent heat storage was demonstrated over a period of hours.•The material was shown to be quite resistant to rapid changes in incident flux.•The thermal conductivity was found to be 55 W/mK.•Integration of solar receiver, storage and heat exchanger appears possible. The ability of a C-Zn Miscibility Gap Alloy (MGA) material to operate as a combined solar receiver and storage was investigated. MGA thermal energy storage materials comprise metallic PCM particles embedded within a conducting metal or semi-metal matrix to form a macroscopically solid combined latent heat/sensible heat storage material. A receiver containing 4 × 1L MGA storage modules was mounted on a solar concentrating dish. The storage material was directly illuminated by concentrated solar radiation at a flux of approximately 105 kW/m2, readily attaining surface temperatures of 520–530 °C, well above the phase change temperature of 420 °C. Single step charging led to a state of charge of 80% without exceeding a nominal surface temperature of 530 °C. Cycling on and off sun in the range 460–520 °C was used to achieve a state of 99% charged. Thermal performance of the MGA during solar charging and its discharge by natural cooling is presented and analysed.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2018.11.048</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Alloys ; Charging ; Concentrated solar power ; Cooling ; Energy storage ; Enthalpy ; Heat storage ; Latent heat ; Metals ; Miscibility ; Phase change material ; Phase transitions ; Sensible heat ; Solar absorption ; Solar energy ; Solar radiation ; Sun ; Temperature ; Thermal energy ; Thermal storage ; Zinc</subject><ispartof>Solar energy, 2019-01, Vol.177, p.657-664</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Jan 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83</citedby><cites>FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Copus, Mark</creatorcontrib><creatorcontrib>Fraser, Benjamin</creatorcontrib><creatorcontrib>Reece, Roger</creatorcontrib><creatorcontrib>Hands, Stuart</creatorcontrib><creatorcontrib>Cuskelly, Dylan</creatorcontrib><creatorcontrib>Sugo, Heber</creatorcontrib><creatorcontrib>Reed, Samuel</creatorcontrib><creatorcontrib>Bradley, James</creatorcontrib><creatorcontrib>Post, Alexander</creatorcontrib><creatorcontrib>Kisi, Erich</creatorcontrib><title>On-sun testing of Miscibility Gap Alloy thermal storage</title><title>Solar energy</title><description>•An MGA thermal storage block was used to directly absorb concentrated sunlight.•Sensible and latent heat storage was demonstrated over a period of hours.•The material was shown to be quite resistant to rapid changes in incident flux.•The thermal conductivity was found to be 55 W/mK.•Integration of solar receiver, storage and heat exchanger appears possible. The ability of a C-Zn Miscibility Gap Alloy (MGA) material to operate as a combined solar receiver and storage was investigated. MGA thermal energy storage materials comprise metallic PCM particles embedded within a conducting metal or semi-metal matrix to form a macroscopically solid combined latent heat/sensible heat storage material. A receiver containing 4 × 1L MGA storage modules was mounted on a solar concentrating dish. The storage material was directly illuminated by concentrated solar radiation at a flux of approximately 105 kW/m2, readily attaining surface temperatures of 520–530 °C, well above the phase change temperature of 420 °C. Single step charging led to a state of charge of 80% without exceeding a nominal surface temperature of 530 °C. Cycling on and off sun in the range 460–520 °C was used to achieve a state of 99% charged. Thermal performance of the MGA during solar charging and its discharge by natural cooling is presented and analysed.</description><subject>Alloys</subject><subject>Charging</subject><subject>Concentrated solar power</subject><subject>Cooling</subject><subject>Energy storage</subject><subject>Enthalpy</subject><subject>Heat storage</subject><subject>Latent heat</subject><subject>Metals</subject><subject>Miscibility</subject><subject>Phase change material</subject><subject>Phase transitions</subject><subject>Sensible heat</subject><subject>Solar absorption</subject><subject>Solar energy</subject><subject>Solar radiation</subject><subject>Sun</subject><subject>Temperature</subject><subject>Thermal energy</subject><subject>Thermal storage</subject><subject>Zinc</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKs_QVjwvGsm2Wx2T1KKVqHSi4K3kGYnNct2U5Ot0H9vSnv3NId57828j5B7oAVQqB67IvoeBwwFo1AXAAUt6wsygVJCDkzISzKhlNc5bdjXNbmJsaMUJNRyQuRqyON-yEaMoxs2mbfZu4vGrV3vxkO20Lts1vf-kI3fGLa6z-Log97gLbmyuo94d55T8vny_DF_zZerxdt8tswNl9WY161mkpUCW4PUCAHCcqF1axEquW45WGsqKpuK0lJUuuGNZUYi42tuBG1rPiUPp9xd8D_79KTq_D4M6aRiIFlVCtnIpBInlQk-xoBW7YLb6nBQQNWRkerUmZE6MlIAKjFKvqeTD1OFX5e2qToOBlsX0Iyq9e6fhD9eYXHW</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Copus, Mark</creator><creator>Fraser, Benjamin</creator><creator>Reece, Roger</creator><creator>Hands, Stuart</creator><creator>Cuskelly, Dylan</creator><creator>Sugo, Heber</creator><creator>Reed, Samuel</creator><creator>Bradley, James</creator><creator>Post, Alexander</creator><creator>Kisi, Erich</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190101</creationdate><title>On-sun testing of Miscibility Gap Alloy thermal storage</title><author>Copus, Mark ; Fraser, Benjamin ; Reece, Roger ; Hands, Stuart ; Cuskelly, Dylan ; Sugo, Heber ; Reed, Samuel ; Bradley, James ; Post, Alexander ; Kisi, Erich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Charging</topic><topic>Concentrated solar power</topic><topic>Cooling</topic><topic>Energy storage</topic><topic>Enthalpy</topic><topic>Heat storage</topic><topic>Latent heat</topic><topic>Metals</topic><topic>Miscibility</topic><topic>Phase change material</topic><topic>Phase transitions</topic><topic>Sensible heat</topic><topic>Solar absorption</topic><topic>Solar energy</topic><topic>Solar radiation</topic><topic>Sun</topic><topic>Temperature</topic><topic>Thermal energy</topic><topic>Thermal storage</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Copus, Mark</creatorcontrib><creatorcontrib>Fraser, Benjamin</creatorcontrib><creatorcontrib>Reece, Roger</creatorcontrib><creatorcontrib>Hands, Stuart</creatorcontrib><creatorcontrib>Cuskelly, Dylan</creatorcontrib><creatorcontrib>Sugo, Heber</creatorcontrib><creatorcontrib>Reed, Samuel</creatorcontrib><creatorcontrib>Bradley, James</creatorcontrib><creatorcontrib>Post, Alexander</creatorcontrib><creatorcontrib>Kisi, Erich</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Copus, Mark</au><au>Fraser, Benjamin</au><au>Reece, Roger</au><au>Hands, Stuart</au><au>Cuskelly, Dylan</au><au>Sugo, Heber</au><au>Reed, Samuel</au><au>Bradley, James</au><au>Post, Alexander</au><au>Kisi, Erich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-sun testing of Miscibility Gap Alloy thermal storage</atitle><jtitle>Solar energy</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>177</volume><spage>657</spage><epage>664</epage><pages>657-664</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•An MGA thermal storage block was used to directly absorb concentrated sunlight.•Sensible and latent heat storage was demonstrated over a period of hours.•The material was shown to be quite resistant to rapid changes in incident flux.•The thermal conductivity was found to be 55 W/mK.•Integration of solar receiver, storage and heat exchanger appears possible. The ability of a C-Zn Miscibility Gap Alloy (MGA) material to operate as a combined solar receiver and storage was investigated. MGA thermal energy storage materials comprise metallic PCM particles embedded within a conducting metal or semi-metal matrix to form a macroscopically solid combined latent heat/sensible heat storage material. A receiver containing 4 × 1L MGA storage modules was mounted on a solar concentrating dish. The storage material was directly illuminated by concentrated solar radiation at a flux of approximately 105 kW/m2, readily attaining surface temperatures of 520–530 °C, well above the phase change temperature of 420 °C. Single step charging led to a state of charge of 80% without exceeding a nominal surface temperature of 530 °C. Cycling on and off sun in the range 460–520 °C was used to achieve a state of 99% charged. Thermal performance of the MGA during solar charging and its discharge by natural cooling is presented and analysed.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2018.11.048</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2019-01, Vol.177, p.657-664
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2172645797
source ScienceDirect Freedom Collection
subjects Alloys
Charging
Concentrated solar power
Cooling
Energy storage
Enthalpy
Heat storage
Latent heat
Metals
Miscibility
Phase change material
Phase transitions
Sensible heat
Solar absorption
Solar energy
Solar radiation
Sun
Temperature
Thermal energy
Thermal storage
Zinc
title On-sun testing of Miscibility Gap Alloy thermal storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-sun%20testing%20of%20Miscibility%20Gap%20Alloy%20thermal%20storage&rft.jtitle=Solar%20energy&rft.au=Copus,%20Mark&rft.date=2019-01-01&rft.volume=177&rft.spage=657&rft.epage=664&rft.pages=657-664&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2018.11.048&rft_dat=%3Cproquest_cross%3E2172645797%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172645797&rft_id=info:pmid/&rfr_iscdi=true