Loading…
On-sun testing of Miscibility Gap Alloy thermal storage
•An MGA thermal storage block was used to directly absorb concentrated sunlight.•Sensible and latent heat storage was demonstrated over a period of hours.•The material was shown to be quite resistant to rapid changes in incident flux.•The thermal conductivity was found to be 55 W/mK.•Integration of...
Saved in:
Published in: | Solar energy 2019-01, Vol.177, p.657-664 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83 |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83 |
container_end_page | 664 |
container_issue | |
container_start_page | 657 |
container_title | Solar energy |
container_volume | 177 |
creator | Copus, Mark Fraser, Benjamin Reece, Roger Hands, Stuart Cuskelly, Dylan Sugo, Heber Reed, Samuel Bradley, James Post, Alexander Kisi, Erich |
description | •An MGA thermal storage block was used to directly absorb concentrated sunlight.•Sensible and latent heat storage was demonstrated over a period of hours.•The material was shown to be quite resistant to rapid changes in incident flux.•The thermal conductivity was found to be 55 W/mK.•Integration of solar receiver, storage and heat exchanger appears possible.
The ability of a C-Zn Miscibility Gap Alloy (MGA) material to operate as a combined solar receiver and storage was investigated. MGA thermal energy storage materials comprise metallic PCM particles embedded within a conducting metal or semi-metal matrix to form a macroscopically solid combined latent heat/sensible heat storage material. A receiver containing 4 × 1L MGA storage modules was mounted on a solar concentrating dish. The storage material was directly illuminated by concentrated solar radiation at a flux of approximately 105 kW/m2, readily attaining surface temperatures of 520–530 °C, well above the phase change temperature of 420 °C. Single step charging led to a state of charge of 80% without exceeding a nominal surface temperature of 530 °C. Cycling on and off sun in the range 460–520 °C was used to achieve a state of 99% charged. Thermal performance of the MGA during solar charging and its discharge by natural cooling is presented and analysed. |
doi_str_mv | 10.1016/j.solener.2018.11.048 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172645797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X18311484</els_id><sourcerecordid>2172645797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_QVjwvGsm2Wx2T1KKVqHSi4K3kGYnNct2U5Ot0H9vSnv3NId57828j5B7oAVQqB67IvoeBwwFo1AXAAUt6wsygVJCDkzISzKhlNc5bdjXNbmJsaMUJNRyQuRqyON-yEaMoxs2mbfZu4vGrV3vxkO20Lts1vf-kI3fGLa6z-Log97gLbmyuo94d55T8vny_DF_zZerxdt8tswNl9WY161mkpUCW4PUCAHCcqF1axEquW45WGsqKpuK0lJUuuGNZUYi42tuBG1rPiUPp9xd8D_79KTq_D4M6aRiIFlVCtnIpBInlQk-xoBW7YLb6nBQQNWRkerUmZE6MlIAKjFKvqeTD1OFX5e2qToOBlsX0Iyq9e6fhD9eYXHW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172645797</pqid></control><display><type>article</type><title>On-sun testing of Miscibility Gap Alloy thermal storage</title><source>ScienceDirect Freedom Collection</source><creator>Copus, Mark ; Fraser, Benjamin ; Reece, Roger ; Hands, Stuart ; Cuskelly, Dylan ; Sugo, Heber ; Reed, Samuel ; Bradley, James ; Post, Alexander ; Kisi, Erich</creator><creatorcontrib>Copus, Mark ; Fraser, Benjamin ; Reece, Roger ; Hands, Stuart ; Cuskelly, Dylan ; Sugo, Heber ; Reed, Samuel ; Bradley, James ; Post, Alexander ; Kisi, Erich</creatorcontrib><description>•An MGA thermal storage block was used to directly absorb concentrated sunlight.•Sensible and latent heat storage was demonstrated over a period of hours.•The material was shown to be quite resistant to rapid changes in incident flux.•The thermal conductivity was found to be 55 W/mK.•Integration of solar receiver, storage and heat exchanger appears possible.
The ability of a C-Zn Miscibility Gap Alloy (MGA) material to operate as a combined solar receiver and storage was investigated. MGA thermal energy storage materials comprise metallic PCM particles embedded within a conducting metal or semi-metal matrix to form a macroscopically solid combined latent heat/sensible heat storage material. A receiver containing 4 × 1L MGA storage modules was mounted on a solar concentrating dish. The storage material was directly illuminated by concentrated solar radiation at a flux of approximately 105 kW/m2, readily attaining surface temperatures of 520–530 °C, well above the phase change temperature of 420 °C. Single step charging led to a state of charge of 80% without exceeding a nominal surface temperature of 530 °C. Cycling on and off sun in the range 460–520 °C was used to achieve a state of 99% charged. Thermal performance of the MGA during solar charging and its discharge by natural cooling is presented and analysed.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2018.11.048</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Alloys ; Charging ; Concentrated solar power ; Cooling ; Energy storage ; Enthalpy ; Heat storage ; Latent heat ; Metals ; Miscibility ; Phase change material ; Phase transitions ; Sensible heat ; Solar absorption ; Solar energy ; Solar radiation ; Sun ; Temperature ; Thermal energy ; Thermal storage ; Zinc</subject><ispartof>Solar energy, 2019-01, Vol.177, p.657-664</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Jan 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83</citedby><cites>FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Copus, Mark</creatorcontrib><creatorcontrib>Fraser, Benjamin</creatorcontrib><creatorcontrib>Reece, Roger</creatorcontrib><creatorcontrib>Hands, Stuart</creatorcontrib><creatorcontrib>Cuskelly, Dylan</creatorcontrib><creatorcontrib>Sugo, Heber</creatorcontrib><creatorcontrib>Reed, Samuel</creatorcontrib><creatorcontrib>Bradley, James</creatorcontrib><creatorcontrib>Post, Alexander</creatorcontrib><creatorcontrib>Kisi, Erich</creatorcontrib><title>On-sun testing of Miscibility Gap Alloy thermal storage</title><title>Solar energy</title><description>•An MGA thermal storage block was used to directly absorb concentrated sunlight.•Sensible and latent heat storage was demonstrated over a period of hours.•The material was shown to be quite resistant to rapid changes in incident flux.•The thermal conductivity was found to be 55 W/mK.•Integration of solar receiver, storage and heat exchanger appears possible.
The ability of a C-Zn Miscibility Gap Alloy (MGA) material to operate as a combined solar receiver and storage was investigated. MGA thermal energy storage materials comprise metallic PCM particles embedded within a conducting metal or semi-metal matrix to form a macroscopically solid combined latent heat/sensible heat storage material. A receiver containing 4 × 1L MGA storage modules was mounted on a solar concentrating dish. The storage material was directly illuminated by concentrated solar radiation at a flux of approximately 105 kW/m2, readily attaining surface temperatures of 520–530 °C, well above the phase change temperature of 420 °C. Single step charging led to a state of charge of 80% without exceeding a nominal surface temperature of 530 °C. Cycling on and off sun in the range 460–520 °C was used to achieve a state of 99% charged. Thermal performance of the MGA during solar charging and its discharge by natural cooling is presented and analysed.</description><subject>Alloys</subject><subject>Charging</subject><subject>Concentrated solar power</subject><subject>Cooling</subject><subject>Energy storage</subject><subject>Enthalpy</subject><subject>Heat storage</subject><subject>Latent heat</subject><subject>Metals</subject><subject>Miscibility</subject><subject>Phase change material</subject><subject>Phase transitions</subject><subject>Sensible heat</subject><subject>Solar absorption</subject><subject>Solar energy</subject><subject>Solar radiation</subject><subject>Sun</subject><subject>Temperature</subject><subject>Thermal energy</subject><subject>Thermal storage</subject><subject>Zinc</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKs_QVjwvGsm2Wx2T1KKVqHSi4K3kGYnNct2U5Ot0H9vSnv3NId57828j5B7oAVQqB67IvoeBwwFo1AXAAUt6wsygVJCDkzISzKhlNc5bdjXNbmJsaMUJNRyQuRqyON-yEaMoxs2mbfZu4vGrV3vxkO20Lts1vf-kI3fGLa6z-Log97gLbmyuo94d55T8vny_DF_zZerxdt8tswNl9WY161mkpUCW4PUCAHCcqF1axEquW45WGsqKpuK0lJUuuGNZUYi42tuBG1rPiUPp9xd8D_79KTq_D4M6aRiIFlVCtnIpBInlQk-xoBW7YLb6nBQQNWRkerUmZE6MlIAKjFKvqeTD1OFX5e2qToOBlsX0Iyq9e6fhD9eYXHW</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Copus, Mark</creator><creator>Fraser, Benjamin</creator><creator>Reece, Roger</creator><creator>Hands, Stuart</creator><creator>Cuskelly, Dylan</creator><creator>Sugo, Heber</creator><creator>Reed, Samuel</creator><creator>Bradley, James</creator><creator>Post, Alexander</creator><creator>Kisi, Erich</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190101</creationdate><title>On-sun testing of Miscibility Gap Alloy thermal storage</title><author>Copus, Mark ; Fraser, Benjamin ; Reece, Roger ; Hands, Stuart ; Cuskelly, Dylan ; Sugo, Heber ; Reed, Samuel ; Bradley, James ; Post, Alexander ; Kisi, Erich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Charging</topic><topic>Concentrated solar power</topic><topic>Cooling</topic><topic>Energy storage</topic><topic>Enthalpy</topic><topic>Heat storage</topic><topic>Latent heat</topic><topic>Metals</topic><topic>Miscibility</topic><topic>Phase change material</topic><topic>Phase transitions</topic><topic>Sensible heat</topic><topic>Solar absorption</topic><topic>Solar energy</topic><topic>Solar radiation</topic><topic>Sun</topic><topic>Temperature</topic><topic>Thermal energy</topic><topic>Thermal storage</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Copus, Mark</creatorcontrib><creatorcontrib>Fraser, Benjamin</creatorcontrib><creatorcontrib>Reece, Roger</creatorcontrib><creatorcontrib>Hands, Stuart</creatorcontrib><creatorcontrib>Cuskelly, Dylan</creatorcontrib><creatorcontrib>Sugo, Heber</creatorcontrib><creatorcontrib>Reed, Samuel</creatorcontrib><creatorcontrib>Bradley, James</creatorcontrib><creatorcontrib>Post, Alexander</creatorcontrib><creatorcontrib>Kisi, Erich</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Copus, Mark</au><au>Fraser, Benjamin</au><au>Reece, Roger</au><au>Hands, Stuart</au><au>Cuskelly, Dylan</au><au>Sugo, Heber</au><au>Reed, Samuel</au><au>Bradley, James</au><au>Post, Alexander</au><au>Kisi, Erich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-sun testing of Miscibility Gap Alloy thermal storage</atitle><jtitle>Solar energy</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>177</volume><spage>657</spage><epage>664</epage><pages>657-664</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•An MGA thermal storage block was used to directly absorb concentrated sunlight.•Sensible and latent heat storage was demonstrated over a period of hours.•The material was shown to be quite resistant to rapid changes in incident flux.•The thermal conductivity was found to be 55 W/mK.•Integration of solar receiver, storage and heat exchanger appears possible.
The ability of a C-Zn Miscibility Gap Alloy (MGA) material to operate as a combined solar receiver and storage was investigated. MGA thermal energy storage materials comprise metallic PCM particles embedded within a conducting metal or semi-metal matrix to form a macroscopically solid combined latent heat/sensible heat storage material. A receiver containing 4 × 1L MGA storage modules was mounted on a solar concentrating dish. The storage material was directly illuminated by concentrated solar radiation at a flux of approximately 105 kW/m2, readily attaining surface temperatures of 520–530 °C, well above the phase change temperature of 420 °C. Single step charging led to a state of charge of 80% without exceeding a nominal surface temperature of 530 °C. Cycling on and off sun in the range 460–520 °C was used to achieve a state of 99% charged. Thermal performance of the MGA during solar charging and its discharge by natural cooling is presented and analysed.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2018.11.048</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2019-01, Vol.177, p.657-664 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_journals_2172645797 |
source | ScienceDirect Freedom Collection |
subjects | Alloys Charging Concentrated solar power Cooling Energy storage Enthalpy Heat storage Latent heat Metals Miscibility Phase change material Phase transitions Sensible heat Solar absorption Solar energy Solar radiation Sun Temperature Thermal energy Thermal storage Zinc |
title | On-sun testing of Miscibility Gap Alloy thermal storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-sun%20testing%20of%20Miscibility%20Gap%20Alloy%20thermal%20storage&rft.jtitle=Solar%20energy&rft.au=Copus,%20Mark&rft.date=2019-01-01&rft.volume=177&rft.spage=657&rft.epage=664&rft.pages=657-664&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2018.11.048&rft_dat=%3Cproquest_cross%3E2172645797%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-8da27245edce0c5515f35aadfe167bd31ffc6079600456a939f2c7e23b3c50d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172645797&rft_id=info:pmid/&rfr_iscdi=true |