Loading…

Faster methods for contracting infinite two-dimensional tensor networks

We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power met...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2018-12, Vol.98 (23), p.1, Article 235148
Main Authors: Fishman, M. T., Vanderstraeten, L., Zauner-Stauber, V., Haegeman, J., Verstraete, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93
cites cdi_FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93
container_end_page
container_issue 23
container_start_page 1
container_title Physical review. B
container_volume 98
creator Fishman, M. T.
Vanderstraeten, L.
Zauner-Stauber, V.
Haegeman, J.
Verstraete, F.
description We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power method used in CTMRG. We also generalize the variational uniform matrix product state (VUMPS) ansatz for diagonalizing 1D quantum Hamiltonians to the case of 2D transfer matrices and discuss similarities with the corner methods. These two new algorithms will be crucial to improving the performance of variational infinite projected entangled pair state (PEPS) methods.
doi_str_mv 10.1103/PhysRevB.98.235148
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172646704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172646704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWGr_gKsB11PzOTNvqcVWoaCIrkMm82JT20lNUqX_3pGqq3fhHS6XQ8glo1PGqLh-Wh3SM37eTqGZcqGYbE7IiMsKSoAKTv-zoudkktKaUsoqCjWFEVnMTcoYiy3mVehS4UIsbOhzNDb7_q3wvfO9z1jkr1B2fot98qE3myIPaWB7HB7xPV2QM2c2CSe_d0xe53cvs_ty-bh4mN0sSysalUtXqZpTXremBXQoWrCiYyiVbKzj0IJhqrPQWtlZyjuFrTWCo5OIVIADMSZXx95dDB97TFmvwz4Og5LmrOaVrGoqB4ofKRtDShGd3kW_NfGgGdU_zvSfMw2NPjoT3-pxYyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172646704</pqid></control><display><type>article</type><title>Faster methods for contracting infinite two-dimensional tensor networks</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Fishman, M. T. ; Vanderstraeten, L. ; Zauner-Stauber, V. ; Haegeman, J. ; Verstraete, F.</creator><creatorcontrib>Fishman, M. T. ; Vanderstraeten, L. ; Zauner-Stauber, V. ; Haegeman, J. ; Verstraete, F.</creatorcontrib><description>We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power method used in CTMRG. We also generalize the variational uniform matrix product state (VUMPS) ansatz for diagonalizing 1D quantum Hamiltonians to the case of 2D transfer matrices and discuss similarities with the corner methods. These two new algorithms will be crucial to improving the performance of variational infinite projected entangled pair state (PEPS) methods.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.235148</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Contraction ; Eigenvalues ; Hamiltonian functions ; Mathematical analysis ; Tensors ; Transfer matrices</subject><ispartof>Physical review. B, 2018-12, Vol.98 (23), p.1, Article 235148</ispartof><rights>Copyright American Physical Society Dec 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93</citedby><cites>FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Fishman, M. T.</creatorcontrib><creatorcontrib>Vanderstraeten, L.</creatorcontrib><creatorcontrib>Zauner-Stauber, V.</creatorcontrib><creatorcontrib>Haegeman, J.</creatorcontrib><creatorcontrib>Verstraete, F.</creatorcontrib><title>Faster methods for contracting infinite two-dimensional tensor networks</title><title>Physical review. B</title><description>We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power method used in CTMRG. We also generalize the variational uniform matrix product state (VUMPS) ansatz for diagonalizing 1D quantum Hamiltonians to the case of 2D transfer matrices and discuss similarities with the corner methods. These two new algorithms will be crucial to improving the performance of variational infinite projected entangled pair state (PEPS) methods.</description><subject>Contraction</subject><subject>Eigenvalues</subject><subject>Hamiltonian functions</subject><subject>Mathematical analysis</subject><subject>Tensors</subject><subject>Transfer matrices</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWGr_gKsB11PzOTNvqcVWoaCIrkMm82JT20lNUqX_3pGqq3fhHS6XQ8glo1PGqLh-Wh3SM37eTqGZcqGYbE7IiMsKSoAKTv-zoudkktKaUsoqCjWFEVnMTcoYiy3mVehS4UIsbOhzNDb7_q3wvfO9z1jkr1B2fot98qE3myIPaWB7HB7xPV2QM2c2CSe_d0xe53cvs_ty-bh4mN0sSysalUtXqZpTXremBXQoWrCiYyiVbKzj0IJhqrPQWtlZyjuFrTWCo5OIVIADMSZXx95dDB97TFmvwz4Og5LmrOaVrGoqB4ofKRtDShGd3kW_NfGgGdU_zvSfMw2NPjoT3-pxYyU</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Fishman, M. T.</creator><creator>Vanderstraeten, L.</creator><creator>Zauner-Stauber, V.</creator><creator>Haegeman, J.</creator><creator>Verstraete, F.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181226</creationdate><title>Faster methods for contracting infinite two-dimensional tensor networks</title><author>Fishman, M. T. ; Vanderstraeten, L. ; Zauner-Stauber, V. ; Haegeman, J. ; Verstraete, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Contraction</topic><topic>Eigenvalues</topic><topic>Hamiltonian functions</topic><topic>Mathematical analysis</topic><topic>Tensors</topic><topic>Transfer matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fishman, M. T.</creatorcontrib><creatorcontrib>Vanderstraeten, L.</creatorcontrib><creatorcontrib>Zauner-Stauber, V.</creatorcontrib><creatorcontrib>Haegeman, J.</creatorcontrib><creatorcontrib>Verstraete, F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fishman, M. T.</au><au>Vanderstraeten, L.</au><au>Zauner-Stauber, V.</au><au>Haegeman, J.</au><au>Verstraete, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faster methods for contracting infinite two-dimensional tensor networks</atitle><jtitle>Physical review. B</jtitle><date>2018-12-26</date><risdate>2018</risdate><volume>98</volume><issue>23</issue><spage>1</spage><pages>1-</pages><artnum>235148</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power method used in CTMRG. We also generalize the variational uniform matrix product state (VUMPS) ansatz for diagonalizing 1D quantum Hamiltonians to the case of 2D transfer matrices and discuss similarities with the corner methods. These two new algorithms will be crucial to improving the performance of variational infinite projected entangled pair state (PEPS) methods.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.235148</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-12, Vol.98 (23), p.1, Article 235148
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2172646704
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Contraction
Eigenvalues
Hamiltonian functions
Mathematical analysis
Tensors
Transfer matrices
title Faster methods for contracting infinite two-dimensional tensor networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faster%20methods%20for%20contracting%20infinite%20two-dimensional%20tensor%20networks&rft.jtitle=Physical%20review.%20B&rft.au=Fishman,%20M.%20T.&rft.date=2018-12-26&rft.volume=98&rft.issue=23&rft.spage=1&rft.pages=1-&rft.artnum=235148&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.235148&rft_dat=%3Cproquest_cross%3E2172646704%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172646704&rft_id=info:pmid/&rfr_iscdi=true