Loading…
Faster methods for contracting infinite two-dimensional tensor networks
We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power met...
Saved in:
Published in: | Physical review. B 2018-12, Vol.98 (23), p.1, Article 235148 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93 |
container_end_page | |
container_issue | 23 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 98 |
creator | Fishman, M. T. Vanderstraeten, L. Zauner-Stauber, V. Haegeman, J. Verstraete, F. |
description | We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power method used in CTMRG. We also generalize the variational uniform matrix product state (VUMPS) ansatz for diagonalizing 1D quantum Hamiltonians to the case of 2D transfer matrices and discuss similarities with the corner methods. These two new algorithms will be crucial to improving the performance of variational infinite projected entangled pair state (PEPS) methods. |
doi_str_mv | 10.1103/PhysRevB.98.235148 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172646704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172646704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWGr_gKsB11PzOTNvqcVWoaCIrkMm82JT20lNUqX_3pGqq3fhHS6XQ8glo1PGqLh-Wh3SM37eTqGZcqGYbE7IiMsKSoAKTv-zoudkktKaUsoqCjWFEVnMTcoYiy3mVehS4UIsbOhzNDb7_q3wvfO9z1jkr1B2fot98qE3myIPaWB7HB7xPV2QM2c2CSe_d0xe53cvs_ty-bh4mN0sSysalUtXqZpTXremBXQoWrCiYyiVbKzj0IJhqrPQWtlZyjuFrTWCo5OIVIADMSZXx95dDB97TFmvwz4Og5LmrOaVrGoqB4ofKRtDShGd3kW_NfGgGdU_zvSfMw2NPjoT3-pxYyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172646704</pqid></control><display><type>article</type><title>Faster methods for contracting infinite two-dimensional tensor networks</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Fishman, M. T. ; Vanderstraeten, L. ; Zauner-Stauber, V. ; Haegeman, J. ; Verstraete, F.</creator><creatorcontrib>Fishman, M. T. ; Vanderstraeten, L. ; Zauner-Stauber, V. ; Haegeman, J. ; Verstraete, F.</creatorcontrib><description>We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power method used in CTMRG. We also generalize the variational uniform matrix product state (VUMPS) ansatz for diagonalizing 1D quantum Hamiltonians to the case of 2D transfer matrices and discuss similarities with the corner methods. These two new algorithms will be crucial to improving the performance of variational infinite projected entangled pair state (PEPS) methods.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.235148</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Contraction ; Eigenvalues ; Hamiltonian functions ; Mathematical analysis ; Tensors ; Transfer matrices</subject><ispartof>Physical review. B, 2018-12, Vol.98 (23), p.1, Article 235148</ispartof><rights>Copyright American Physical Society Dec 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93</citedby><cites>FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Fishman, M. T.</creatorcontrib><creatorcontrib>Vanderstraeten, L.</creatorcontrib><creatorcontrib>Zauner-Stauber, V.</creatorcontrib><creatorcontrib>Haegeman, J.</creatorcontrib><creatorcontrib>Verstraete, F.</creatorcontrib><title>Faster methods for contracting infinite two-dimensional tensor networks</title><title>Physical review. B</title><description>We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power method used in CTMRG. We also generalize the variational uniform matrix product state (VUMPS) ansatz for diagonalizing 1D quantum Hamiltonians to the case of 2D transfer matrices and discuss similarities with the corner methods. These two new algorithms will be crucial to improving the performance of variational infinite projected entangled pair state (PEPS) methods.</description><subject>Contraction</subject><subject>Eigenvalues</subject><subject>Hamiltonian functions</subject><subject>Mathematical analysis</subject><subject>Tensors</subject><subject>Transfer matrices</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWGr_gKsB11PzOTNvqcVWoaCIrkMm82JT20lNUqX_3pGqq3fhHS6XQ8glo1PGqLh-Wh3SM37eTqGZcqGYbE7IiMsKSoAKTv-zoudkktKaUsoqCjWFEVnMTcoYiy3mVehS4UIsbOhzNDb7_q3wvfO9z1jkr1B2fot98qE3myIPaWB7HB7xPV2QM2c2CSe_d0xe53cvs_ty-bh4mN0sSysalUtXqZpTXremBXQoWrCiYyiVbKzj0IJhqrPQWtlZyjuFrTWCo5OIVIADMSZXx95dDB97TFmvwz4Og5LmrOaVrGoqB4ofKRtDShGd3kW_NfGgGdU_zvSfMw2NPjoT3-pxYyU</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Fishman, M. T.</creator><creator>Vanderstraeten, L.</creator><creator>Zauner-Stauber, V.</creator><creator>Haegeman, J.</creator><creator>Verstraete, F.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181226</creationdate><title>Faster methods for contracting infinite two-dimensional tensor networks</title><author>Fishman, M. T. ; Vanderstraeten, L. ; Zauner-Stauber, V. ; Haegeman, J. ; Verstraete, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Contraction</topic><topic>Eigenvalues</topic><topic>Hamiltonian functions</topic><topic>Mathematical analysis</topic><topic>Tensors</topic><topic>Transfer matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fishman, M. T.</creatorcontrib><creatorcontrib>Vanderstraeten, L.</creatorcontrib><creatorcontrib>Zauner-Stauber, V.</creatorcontrib><creatorcontrib>Haegeman, J.</creatorcontrib><creatorcontrib>Verstraete, F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fishman, M. T.</au><au>Vanderstraeten, L.</au><au>Zauner-Stauber, V.</au><au>Haegeman, J.</au><au>Verstraete, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faster methods for contracting infinite two-dimensional tensor networks</atitle><jtitle>Physical review. B</jtitle><date>2018-12-26</date><risdate>2018</risdate><volume>98</volume><issue>23</issue><spage>1</spage><pages>1-</pages><artnum>235148</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power method used in CTMRG. We also generalize the variational uniform matrix product state (VUMPS) ansatz for diagonalizing 1D quantum Hamiltonians to the case of 2D transfer matrices and discuss similarities with the corner methods. These two new algorithms will be crucial to improving the performance of variational infinite projected entangled pair state (PEPS) methods.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.235148</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-12, Vol.98 (23), p.1, Article 235148 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2172646704 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Contraction Eigenvalues Hamiltonian functions Mathematical analysis Tensors Transfer matrices |
title | Faster methods for contracting infinite two-dimensional tensor networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faster%20methods%20for%20contracting%20infinite%20two-dimensional%20tensor%20networks&rft.jtitle=Physical%20review.%20B&rft.au=Fishman,%20M.%20T.&rft.date=2018-12-26&rft.volume=98&rft.issue=23&rft.spage=1&rft.pages=1-&rft.artnum=235148&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.235148&rft_dat=%3Cproquest_cross%3E2172646704%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-f6572027bab9efe3b9c3d1e4548cf29b9a15dc9bc4dc02d5ebca32ef4ee039f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172646704&rft_id=info:pmid/&rfr_iscdi=true |