Loading…
Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion
Graphene reinforced Cu matrix composite was fabricated by consolidating mechanically mixed powder blend to 98% theoretical density by High Pressure Torsion (HPT). Microstructural characterization by scanning electron microscopy (SEM) elicits even distribution of the reinforcement phase into the matr...
Saved in:
Published in: | Journal of alloys and compounds 2019-03, Vol.776, p.123-132 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53 |
container_end_page | 132 |
container_issue | |
container_start_page | 123 |
container_title | Journal of alloys and compounds |
container_volume | 776 |
creator | Khobragade, Nidhi Sikdar, Koushik Kumar, Binod Bera, Supriya Roy, Debdas |
description | Graphene reinforced Cu matrix composite was fabricated by consolidating mechanically mixed powder blend to 98% theoretical density by High Pressure Torsion (HPT). Microstructural characterization by scanning electron microscopy (SEM) elicits even distribution of the reinforcement phase into the matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirms nanocrystalline microstructure and strong interfacial bonding between Cu and graphene. Addition of 10 wt % graphene yields maximum hardness (∼2.67 GPa) and Young's modulus (∼102.03 GPa). The increment in strength was attributed to the microstructural refinement and dislocation pinning at the strong matrix-reinforcement interface. The electrical conductivity of the Cu- 10 wt% graphene composite was found to be ∼87% IACS. Results indicated that HPT consolidation is an efficient mean for synthesizing Cu-graphene composite with improved strength (∼2 times higher hardness than pure Cu processed under similar condition) with negotiable conductivity.
•Cu-graphene composite was fabricated by High Pressure Torsion (HPT).•Cu-10 wt% graphene composite shows high hardness (2.67 ± 0.08 GPa) and electrical conductivity ∼87% IACS.•TEM investigation shows strong Cu-graphene interface, which acts as barrier to dislocation motion. |
doi_str_mv | 10.1016/j.jallcom.2018.10.139 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172647122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838818338118</els_id><sourcerecordid>2172647122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53</originalsourceid><addsrcrecordid>eNqFUFtLwzAUDqLgnP4EIeBzay5Nmz6JDG8w8UWfQ5qerCldU5NO2L8323z36Vw43-V8CN1SklNCy_s-7_UwGL_NGaEyP6x5fYYWVFY8K8qyPkcLUjORSS7lJbqKsSeE0JrTBXLvYDo9OqMHrMcWwwBmDsdxCn6CMDuI2Fts_JSmbBP01MEIeNSjT5KTj24GbHVzAM3Q4maPO7fpEhxi3AXAsw_R-fEaXVg9RLj5q0v09fz0uXrN1h8vb6vHdWY4r-ZMWl4WgrVS8jJZZKxpeWVTZ6k1lJXaVLZqalHqRmje1iCZMEZUwEVRgxV8ie5OvMn_9w7irHq_C2OSVIxWrCwqyli6EqcrE3yMAayagtvqsFeUqEOqqld_qapDqsc1rxPu4YSD9MKPg6CicTAaaF1IyanWu38YfgEvbIUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172647122</pqid></control><display><type>article</type><title>Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion</title><source>Elsevier</source><creator>Khobragade, Nidhi ; Sikdar, Koushik ; Kumar, Binod ; Bera, Supriya ; Roy, Debdas</creator><creatorcontrib>Khobragade, Nidhi ; Sikdar, Koushik ; Kumar, Binod ; Bera, Supriya ; Roy, Debdas</creatorcontrib><description>Graphene reinforced Cu matrix composite was fabricated by consolidating mechanically mixed powder blend to 98% theoretical density by High Pressure Torsion (HPT). Microstructural characterization by scanning electron microscopy (SEM) elicits even distribution of the reinforcement phase into the matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirms nanocrystalline microstructure and strong interfacial bonding between Cu and graphene. Addition of 10 wt % graphene yields maximum hardness (∼2.67 GPa) and Young's modulus (∼102.03 GPa). The increment in strength was attributed to the microstructural refinement and dislocation pinning at the strong matrix-reinforcement interface. The electrical conductivity of the Cu- 10 wt% graphene composite was found to be ∼87% IACS. Results indicated that HPT consolidation is an efficient mean for synthesizing Cu-graphene composite with improved strength (∼2 times higher hardness than pure Cu processed under similar condition) with negotiable conductivity.
•Cu-graphene composite was fabricated by High Pressure Torsion (HPT).•Cu-10 wt% graphene composite shows high hardness (2.67 ± 0.08 GPa) and electrical conductivity ∼87% IACS.•TEM investigation shows strong Cu-graphene interface, which acts as barrier to dislocation motion.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.10.139</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Bonding strength ; Copper ; Crystal dislocations ; Dislocation pinning ; Dislocations ; Electrical conductivity ; Electrical properties ; Electrical resistivity ; Graphene ; Graphite ; Hardness ; Hardness testing ; Heat conductivity ; High pressure torsion ; Metal matrix composites ; Microstructure ; Modulus of elasticity ; Nanocomposites ; Scanning electron microscopy ; Theoretical density ; Torsion ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Journal of alloys and compounds, 2019-03, Vol.776, p.123-132</ispartof><rights>2018</rights><rights>Copyright Elsevier BV Mar 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53</citedby><cites>FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53</cites><orcidid>0000-0002-4203-2030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Khobragade, Nidhi</creatorcontrib><creatorcontrib>Sikdar, Koushik</creatorcontrib><creatorcontrib>Kumar, Binod</creatorcontrib><creatorcontrib>Bera, Supriya</creatorcontrib><creatorcontrib>Roy, Debdas</creatorcontrib><title>Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion</title><title>Journal of alloys and compounds</title><description>Graphene reinforced Cu matrix composite was fabricated by consolidating mechanically mixed powder blend to 98% theoretical density by High Pressure Torsion (HPT). Microstructural characterization by scanning electron microscopy (SEM) elicits even distribution of the reinforcement phase into the matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirms nanocrystalline microstructure and strong interfacial bonding between Cu and graphene. Addition of 10 wt % graphene yields maximum hardness (∼2.67 GPa) and Young's modulus (∼102.03 GPa). The increment in strength was attributed to the microstructural refinement and dislocation pinning at the strong matrix-reinforcement interface. The electrical conductivity of the Cu- 10 wt% graphene composite was found to be ∼87% IACS. Results indicated that HPT consolidation is an efficient mean for synthesizing Cu-graphene composite with improved strength (∼2 times higher hardness than pure Cu processed under similar condition) with negotiable conductivity.
•Cu-graphene composite was fabricated by High Pressure Torsion (HPT).•Cu-10 wt% graphene composite shows high hardness (2.67 ± 0.08 GPa) and electrical conductivity ∼87% IACS.•TEM investigation shows strong Cu-graphene interface, which acts as barrier to dislocation motion.</description><subject>Bonding strength</subject><subject>Copper</subject><subject>Crystal dislocations</subject><subject>Dislocation pinning</subject><subject>Dislocations</subject><subject>Electrical conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hardness</subject><subject>Hardness testing</subject><subject>Heat conductivity</subject><subject>High pressure torsion</subject><subject>Metal matrix composites</subject><subject>Microstructure</subject><subject>Modulus of elasticity</subject><subject>Nanocomposites</subject><subject>Scanning electron microscopy</subject><subject>Theoretical density</subject><subject>Torsion</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUFtLwzAUDqLgnP4EIeBzay5Nmz6JDG8w8UWfQ5qerCldU5NO2L8323z36Vw43-V8CN1SklNCy_s-7_UwGL_NGaEyP6x5fYYWVFY8K8qyPkcLUjORSS7lJbqKsSeE0JrTBXLvYDo9OqMHrMcWwwBmDsdxCn6CMDuI2Fts_JSmbBP01MEIeNSjT5KTj24GbHVzAM3Q4maPO7fpEhxi3AXAsw_R-fEaXVg9RLj5q0v09fz0uXrN1h8vb6vHdWY4r-ZMWl4WgrVS8jJZZKxpeWVTZ6k1lJXaVLZqalHqRmje1iCZMEZUwEVRgxV8ie5OvMn_9w7irHq_C2OSVIxWrCwqyli6EqcrE3yMAayagtvqsFeUqEOqqld_qapDqsc1rxPu4YSD9MKPg6CicTAaaF1IyanWu38YfgEvbIUA</recordid><startdate>20190305</startdate><enddate>20190305</enddate><creator>Khobragade, Nidhi</creator><creator>Sikdar, Koushik</creator><creator>Kumar, Binod</creator><creator>Bera, Supriya</creator><creator>Roy, Debdas</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4203-2030</orcidid></search><sort><creationdate>20190305</creationdate><title>Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion</title><author>Khobragade, Nidhi ; Sikdar, Koushik ; Kumar, Binod ; Bera, Supriya ; Roy, Debdas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bonding strength</topic><topic>Copper</topic><topic>Crystal dislocations</topic><topic>Dislocation pinning</topic><topic>Dislocations</topic><topic>Electrical conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hardness</topic><topic>Hardness testing</topic><topic>Heat conductivity</topic><topic>High pressure torsion</topic><topic>Metal matrix composites</topic><topic>Microstructure</topic><topic>Modulus of elasticity</topic><topic>Nanocomposites</topic><topic>Scanning electron microscopy</topic><topic>Theoretical density</topic><topic>Torsion</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khobragade, Nidhi</creatorcontrib><creatorcontrib>Sikdar, Koushik</creatorcontrib><creatorcontrib>Kumar, Binod</creatorcontrib><creatorcontrib>Bera, Supriya</creatorcontrib><creatorcontrib>Roy, Debdas</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khobragade, Nidhi</au><au>Sikdar, Koushik</au><au>Kumar, Binod</au><au>Bera, Supriya</au><au>Roy, Debdas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-03-05</date><risdate>2019</risdate><volume>776</volume><spage>123</spage><epage>132</epage><pages>123-132</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Graphene reinforced Cu matrix composite was fabricated by consolidating mechanically mixed powder blend to 98% theoretical density by High Pressure Torsion (HPT). Microstructural characterization by scanning electron microscopy (SEM) elicits even distribution of the reinforcement phase into the matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirms nanocrystalline microstructure and strong interfacial bonding between Cu and graphene. Addition of 10 wt % graphene yields maximum hardness (∼2.67 GPa) and Young's modulus (∼102.03 GPa). The increment in strength was attributed to the microstructural refinement and dislocation pinning at the strong matrix-reinforcement interface. The electrical conductivity of the Cu- 10 wt% graphene composite was found to be ∼87% IACS. Results indicated that HPT consolidation is an efficient mean for synthesizing Cu-graphene composite with improved strength (∼2 times higher hardness than pure Cu processed under similar condition) with negotiable conductivity.
•Cu-graphene composite was fabricated by High Pressure Torsion (HPT).•Cu-10 wt% graphene composite shows high hardness (2.67 ± 0.08 GPa) and electrical conductivity ∼87% IACS.•TEM investigation shows strong Cu-graphene interface, which acts as barrier to dislocation motion.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2018.10.139</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4203-2030</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2019-03, Vol.776, p.123-132 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2172647122 |
source | Elsevier |
subjects | Bonding strength Copper Crystal dislocations Dislocation pinning Dislocations Electrical conductivity Electrical properties Electrical resistivity Graphene Graphite Hardness Hardness testing Heat conductivity High pressure torsion Metal matrix composites Microstructure Modulus of elasticity Nanocomposites Scanning electron microscopy Theoretical density Torsion Transmission electron microscopy X-ray diffraction |
title | Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20electrical%20properties%20of%20copper-graphene%20nanocomposite%20fabricated%20by%20high%20pressure%20torsion&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Khobragade,%20Nidhi&rft.date=2019-03-05&rft.volume=776&rft.spage=123&rft.epage=132&rft.pages=123-132&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.10.139&rft_dat=%3Cproquest_cross%3E2172647122%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172647122&rft_id=info:pmid/&rfr_iscdi=true |