Loading…

Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion

Graphene reinforced Cu matrix composite was fabricated by consolidating mechanically mixed powder blend to 98% theoretical density by High Pressure Torsion (HPT). Microstructural characterization by scanning electron microscopy (SEM) elicits even distribution of the reinforcement phase into the matr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2019-03, Vol.776, p.123-132
Main Authors: Khobragade, Nidhi, Sikdar, Koushik, Kumar, Binod, Bera, Supriya, Roy, Debdas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53
cites cdi_FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53
container_end_page 132
container_issue
container_start_page 123
container_title Journal of alloys and compounds
container_volume 776
creator Khobragade, Nidhi
Sikdar, Koushik
Kumar, Binod
Bera, Supriya
Roy, Debdas
description Graphene reinforced Cu matrix composite was fabricated by consolidating mechanically mixed powder blend to 98% theoretical density by High Pressure Torsion (HPT). Microstructural characterization by scanning electron microscopy (SEM) elicits even distribution of the reinforcement phase into the matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirms nanocrystalline microstructure and strong interfacial bonding between Cu and graphene. Addition of 10 wt % graphene yields maximum hardness (∼2.67 GPa) and Young's modulus (∼102.03 GPa). The increment in strength was attributed to the microstructural refinement and dislocation pinning at the strong matrix-reinforcement interface. The electrical conductivity of the Cu- 10 wt% graphene composite was found to be ∼87% IACS. Results indicated that HPT consolidation is an efficient mean for synthesizing Cu-graphene composite with improved strength (∼2 times higher hardness than pure Cu processed under similar condition) with negotiable conductivity. •Cu-graphene composite was fabricated by High Pressure Torsion (HPT).•Cu-10 wt% graphene composite shows high hardness (2.67 ± 0.08 GPa) and electrical conductivity ∼87% IACS.•TEM investigation shows strong Cu-graphene interface, which acts as barrier to dislocation motion.
doi_str_mv 10.1016/j.jallcom.2018.10.139
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172647122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838818338118</els_id><sourcerecordid>2172647122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53</originalsourceid><addsrcrecordid>eNqFUFtLwzAUDqLgnP4EIeBzay5Nmz6JDG8w8UWfQ5qerCldU5NO2L8323z36Vw43-V8CN1SklNCy_s-7_UwGL_NGaEyP6x5fYYWVFY8K8qyPkcLUjORSS7lJbqKsSeE0JrTBXLvYDo9OqMHrMcWwwBmDsdxCn6CMDuI2Fts_JSmbBP01MEIeNSjT5KTj24GbHVzAM3Q4maPO7fpEhxi3AXAsw_R-fEaXVg9RLj5q0v09fz0uXrN1h8vb6vHdWY4r-ZMWl4WgrVS8jJZZKxpeWVTZ6k1lJXaVLZqalHqRmje1iCZMEZUwEVRgxV8ie5OvMn_9w7irHq_C2OSVIxWrCwqyli6EqcrE3yMAayagtvqsFeUqEOqqld_qapDqsc1rxPu4YSD9MKPg6CicTAaaF1IyanWu38YfgEvbIUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172647122</pqid></control><display><type>article</type><title>Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion</title><source>Elsevier</source><creator>Khobragade, Nidhi ; Sikdar, Koushik ; Kumar, Binod ; Bera, Supriya ; Roy, Debdas</creator><creatorcontrib>Khobragade, Nidhi ; Sikdar, Koushik ; Kumar, Binod ; Bera, Supriya ; Roy, Debdas</creatorcontrib><description>Graphene reinforced Cu matrix composite was fabricated by consolidating mechanically mixed powder blend to 98% theoretical density by High Pressure Torsion (HPT). Microstructural characterization by scanning electron microscopy (SEM) elicits even distribution of the reinforcement phase into the matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirms nanocrystalline microstructure and strong interfacial bonding between Cu and graphene. Addition of 10 wt % graphene yields maximum hardness (∼2.67 GPa) and Young's modulus (∼102.03 GPa). The increment in strength was attributed to the microstructural refinement and dislocation pinning at the strong matrix-reinforcement interface. The electrical conductivity of the Cu- 10 wt% graphene composite was found to be ∼87% IACS. Results indicated that HPT consolidation is an efficient mean for synthesizing Cu-graphene composite with improved strength (∼2 times higher hardness than pure Cu processed under similar condition) with negotiable conductivity. •Cu-graphene composite was fabricated by High Pressure Torsion (HPT).•Cu-10 wt% graphene composite shows high hardness (2.67 ± 0.08 GPa) and electrical conductivity ∼87% IACS.•TEM investigation shows strong Cu-graphene interface, which acts as barrier to dislocation motion.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.10.139</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Bonding strength ; Copper ; Crystal dislocations ; Dislocation pinning ; Dislocations ; Electrical conductivity ; Electrical properties ; Electrical resistivity ; Graphene ; Graphite ; Hardness ; Hardness testing ; Heat conductivity ; High pressure torsion ; Metal matrix composites ; Microstructure ; Modulus of elasticity ; Nanocomposites ; Scanning electron microscopy ; Theoretical density ; Torsion ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Journal of alloys and compounds, 2019-03, Vol.776, p.123-132</ispartof><rights>2018</rights><rights>Copyright Elsevier BV Mar 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53</citedby><cites>FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53</cites><orcidid>0000-0002-4203-2030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Khobragade, Nidhi</creatorcontrib><creatorcontrib>Sikdar, Koushik</creatorcontrib><creatorcontrib>Kumar, Binod</creatorcontrib><creatorcontrib>Bera, Supriya</creatorcontrib><creatorcontrib>Roy, Debdas</creatorcontrib><title>Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion</title><title>Journal of alloys and compounds</title><description>Graphene reinforced Cu matrix composite was fabricated by consolidating mechanically mixed powder blend to 98% theoretical density by High Pressure Torsion (HPT). Microstructural characterization by scanning electron microscopy (SEM) elicits even distribution of the reinforcement phase into the matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirms nanocrystalline microstructure and strong interfacial bonding between Cu and graphene. Addition of 10 wt % graphene yields maximum hardness (∼2.67 GPa) and Young's modulus (∼102.03 GPa). The increment in strength was attributed to the microstructural refinement and dislocation pinning at the strong matrix-reinforcement interface. The electrical conductivity of the Cu- 10 wt% graphene composite was found to be ∼87% IACS. Results indicated that HPT consolidation is an efficient mean for synthesizing Cu-graphene composite with improved strength (∼2 times higher hardness than pure Cu processed under similar condition) with negotiable conductivity. •Cu-graphene composite was fabricated by High Pressure Torsion (HPT).•Cu-10 wt% graphene composite shows high hardness (2.67 ± 0.08 GPa) and electrical conductivity ∼87% IACS.•TEM investigation shows strong Cu-graphene interface, which acts as barrier to dislocation motion.</description><subject>Bonding strength</subject><subject>Copper</subject><subject>Crystal dislocations</subject><subject>Dislocation pinning</subject><subject>Dislocations</subject><subject>Electrical conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hardness</subject><subject>Hardness testing</subject><subject>Heat conductivity</subject><subject>High pressure torsion</subject><subject>Metal matrix composites</subject><subject>Microstructure</subject><subject>Modulus of elasticity</subject><subject>Nanocomposites</subject><subject>Scanning electron microscopy</subject><subject>Theoretical density</subject><subject>Torsion</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUFtLwzAUDqLgnP4EIeBzay5Nmz6JDG8w8UWfQ5qerCldU5NO2L8323z36Vw43-V8CN1SklNCy_s-7_UwGL_NGaEyP6x5fYYWVFY8K8qyPkcLUjORSS7lJbqKsSeE0JrTBXLvYDo9OqMHrMcWwwBmDsdxCn6CMDuI2Fts_JSmbBP01MEIeNSjT5KTj24GbHVzAM3Q4maPO7fpEhxi3AXAsw_R-fEaXVg9RLj5q0v09fz0uXrN1h8vb6vHdWY4r-ZMWl4WgrVS8jJZZKxpeWVTZ6k1lJXaVLZqalHqRmje1iCZMEZUwEVRgxV8ie5OvMn_9w7irHq_C2OSVIxWrCwqyli6EqcrE3yMAayagtvqsFeUqEOqqld_qapDqsc1rxPu4YSD9MKPg6CicTAaaF1IyanWu38YfgEvbIUA</recordid><startdate>20190305</startdate><enddate>20190305</enddate><creator>Khobragade, Nidhi</creator><creator>Sikdar, Koushik</creator><creator>Kumar, Binod</creator><creator>Bera, Supriya</creator><creator>Roy, Debdas</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4203-2030</orcidid></search><sort><creationdate>20190305</creationdate><title>Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion</title><author>Khobragade, Nidhi ; Sikdar, Koushik ; Kumar, Binod ; Bera, Supriya ; Roy, Debdas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bonding strength</topic><topic>Copper</topic><topic>Crystal dislocations</topic><topic>Dislocation pinning</topic><topic>Dislocations</topic><topic>Electrical conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hardness</topic><topic>Hardness testing</topic><topic>Heat conductivity</topic><topic>High pressure torsion</topic><topic>Metal matrix composites</topic><topic>Microstructure</topic><topic>Modulus of elasticity</topic><topic>Nanocomposites</topic><topic>Scanning electron microscopy</topic><topic>Theoretical density</topic><topic>Torsion</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khobragade, Nidhi</creatorcontrib><creatorcontrib>Sikdar, Koushik</creatorcontrib><creatorcontrib>Kumar, Binod</creatorcontrib><creatorcontrib>Bera, Supriya</creatorcontrib><creatorcontrib>Roy, Debdas</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khobragade, Nidhi</au><au>Sikdar, Koushik</au><au>Kumar, Binod</au><au>Bera, Supriya</au><au>Roy, Debdas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-03-05</date><risdate>2019</risdate><volume>776</volume><spage>123</spage><epage>132</epage><pages>123-132</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Graphene reinforced Cu matrix composite was fabricated by consolidating mechanically mixed powder blend to 98% theoretical density by High Pressure Torsion (HPT). Microstructural characterization by scanning electron microscopy (SEM) elicits even distribution of the reinforcement phase into the matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirms nanocrystalline microstructure and strong interfacial bonding between Cu and graphene. Addition of 10 wt % graphene yields maximum hardness (∼2.67 GPa) and Young's modulus (∼102.03 GPa). The increment in strength was attributed to the microstructural refinement and dislocation pinning at the strong matrix-reinforcement interface. The electrical conductivity of the Cu- 10 wt% graphene composite was found to be ∼87% IACS. Results indicated that HPT consolidation is an efficient mean for synthesizing Cu-graphene composite with improved strength (∼2 times higher hardness than pure Cu processed under similar condition) with negotiable conductivity. •Cu-graphene composite was fabricated by High Pressure Torsion (HPT).•Cu-10 wt% graphene composite shows high hardness (2.67 ± 0.08 GPa) and electrical conductivity ∼87% IACS.•TEM investigation shows strong Cu-graphene interface, which acts as barrier to dislocation motion.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2018.10.139</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4203-2030</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2019-03, Vol.776, p.123-132
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2172647122
source Elsevier
subjects Bonding strength
Copper
Crystal dislocations
Dislocation pinning
Dislocations
Electrical conductivity
Electrical properties
Electrical resistivity
Graphene
Graphite
Hardness
Hardness testing
Heat conductivity
High pressure torsion
Metal matrix composites
Microstructure
Modulus of elasticity
Nanocomposites
Scanning electron microscopy
Theoretical density
Torsion
Transmission electron microscopy
X-ray diffraction
title Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20electrical%20properties%20of%20copper-graphene%20nanocomposite%20fabricated%20by%20high%20pressure%20torsion&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Khobragade,%20Nidhi&rft.date=2019-03-05&rft.volume=776&rft.spage=123&rft.epage=132&rft.pages=123-132&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.10.139&rft_dat=%3Cproquest_cross%3E2172647122%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-8f36452d883619322bd37f193f1fc126ac7f7b956ab5a3d9e825cc57e3549ef53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172647122&rft_id=info:pmid/&rfr_iscdi=true