Loading…

Higher Nerves of Simplicial Complexes

We investigate generalized notions of the nerve complex for the facets of a simplicial complex. We show that the homologies of these higher nerve complexes determine the depth of the Stanley-Reisner ring \(k[\Delta]\) as well as the \(f\)-vector and \(h\)-vector of \(\Delta\). We present, as an appl...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-01
Main Authors: Dao, Hailong, Doolittle, Joseph, Duna, Ken, Goeckner, Bennet, Holmes, Brent, Lyle, Justin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dao, Hailong
Doolittle, Joseph
Duna, Ken
Goeckner, Bennet
Holmes, Brent
Lyle, Justin
description We investigate generalized notions of the nerve complex for the facets of a simplicial complex. We show that the homologies of these higher nerve complexes determine the depth of the Stanley-Reisner ring \(k[\Delta]\) as well as the \(f\)-vector and \(h\)-vector of \(\Delta\). We present, as an application, a formula for computing regularity of monomial ideals.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2173326615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2173326615</sourcerecordid><originalsourceid>FETCH-proquest_journals_21733266153</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9chMz0gtUvBLLSpLLVbIT1MIzswtyMlMzkzMUXDOBzJTK1KLeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjQ3NjYyMzM0NSYOFUA6gouyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2173326615</pqid></control><display><type>article</type><title>Higher Nerves of Simplicial Complexes</title><source>Publicly Available Content Database</source><creator>Dao, Hailong ; Doolittle, Joseph ; Duna, Ken ; Goeckner, Bennet ; Holmes, Brent ; Lyle, Justin</creator><creatorcontrib>Dao, Hailong ; Doolittle, Joseph ; Duna, Ken ; Goeckner, Bennet ; Holmes, Brent ; Lyle, Justin</creatorcontrib><description>We investigate generalized notions of the nerve complex for the facets of a simplicial complex. We show that the homologies of these higher nerve complexes determine the depth of the Stanley-Reisner ring \(k[\Delta]\) as well as the \(f\)-vector and \(h\)-vector of \(\Delta\). We present, as an application, a formula for computing regularity of monomial ideals.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Nerves</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2173326615?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Dao, Hailong</creatorcontrib><creatorcontrib>Doolittle, Joseph</creatorcontrib><creatorcontrib>Duna, Ken</creatorcontrib><creatorcontrib>Goeckner, Bennet</creatorcontrib><creatorcontrib>Holmes, Brent</creatorcontrib><creatorcontrib>Lyle, Justin</creatorcontrib><title>Higher Nerves of Simplicial Complexes</title><title>arXiv.org</title><description>We investigate generalized notions of the nerve complex for the facets of a simplicial complex. We show that the homologies of these higher nerve complexes determine the depth of the Stanley-Reisner ring \(k[\Delta]\) as well as the \(f\)-vector and \(h\)-vector of \(\Delta\). We present, as an application, a formula for computing regularity of monomial ideals.</description><subject>Homology</subject><subject>Nerves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9chMz0gtUvBLLSpLLVbIT1MIzswtyMlMzkzMUXDOBzJTK1KLeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjQ3NjYyMzM0NSYOFUA6gouyA</recordid><startdate>20190129</startdate><enddate>20190129</enddate><creator>Dao, Hailong</creator><creator>Doolittle, Joseph</creator><creator>Duna, Ken</creator><creator>Goeckner, Bennet</creator><creator>Holmes, Brent</creator><creator>Lyle, Justin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190129</creationdate><title>Higher Nerves of Simplicial Complexes</title><author>Dao, Hailong ; Doolittle, Joseph ; Duna, Ken ; Goeckner, Bennet ; Holmes, Brent ; Lyle, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21733266153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Homology</topic><topic>Nerves</topic><toplevel>online_resources</toplevel><creatorcontrib>Dao, Hailong</creatorcontrib><creatorcontrib>Doolittle, Joseph</creatorcontrib><creatorcontrib>Duna, Ken</creatorcontrib><creatorcontrib>Goeckner, Bennet</creatorcontrib><creatorcontrib>Holmes, Brent</creatorcontrib><creatorcontrib>Lyle, Justin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dao, Hailong</au><au>Doolittle, Joseph</au><au>Duna, Ken</au><au>Goeckner, Bennet</au><au>Holmes, Brent</au><au>Lyle, Justin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Higher Nerves of Simplicial Complexes</atitle><jtitle>arXiv.org</jtitle><date>2019-01-29</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We investigate generalized notions of the nerve complex for the facets of a simplicial complex. We show that the homologies of these higher nerve complexes determine the depth of the Stanley-Reisner ring \(k[\Delta]\) as well as the \(f\)-vector and \(h\)-vector of \(\Delta\). We present, as an application, a formula for computing regularity of monomial ideals.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2173326615
source Publicly Available Content Database
subjects Homology
Nerves
title Higher Nerves of Simplicial Complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A09%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Higher%20Nerves%20of%20Simplicial%20Complexes&rft.jtitle=arXiv.org&rft.au=Dao,%20Hailong&rft.date=2019-01-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2173326615%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21733266153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2173326615&rft_id=info:pmid/&rfr_iscdi=true