Loading…

Global aerosol modeling with MADE3 (v3.0) in EMAC (based on v2.53): model description and evaluation

Recently, the aerosol microphysics submodel MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, third generation) was introduced as a successor to MADE and MADE-in. It includes nine aerosol species and nine lognormal modes to represent aerosol particles of three differen...

Full description

Saved in:
Bibliographic Details
Published in:Geoscientific Model Development 2019-02, Vol.12 (1), p.541-579
Main Authors: Kaiser, J. Christopher, Hendricks, Johannes, Righi, Mattia, Jöckel, Patrick, Tost, Holger, Kandler, Konrad, Weinzierl, Bernadett, Sauer, Daniel, Heimerl, Katharina, Schwarz, Joshua P., Perring, Anne E., Popp, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, the aerosol microphysics submodel MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, third generation) was introduced as a successor to MADE and MADE-in. It includes nine aerosol species and nine lognormal modes to represent aerosol particles of three different mixing states throughout the aerosol size spectrum. Here, we describe the implementation of the most recent version of MADE3 into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, including a detailed evaluation of a 10-year aerosol simulation with MADE3 as part of EMAC. We compare simulation output to station network measurements of near-surface aerosol component mass concentrations, to airborne measurements of aerosol mass mixing ratio and number concentration vertical profiles, to ground-based and airborne measurements of particle size distributions, and to station network and satellite measurements of aerosol optical depth. Furthermore, we describe and apply a new evaluation method, which allows a comparison of model output to size-resolved electron microscopy measurements of particle composition. Although there are indications that fine-mode particle deposition may be underestimated by the model, we obtained satisfactory agreement with the observations. Remaining deviations are of similar size to those identified in other global aerosol model studies. Thus, MADE3 can be considered ready for application within EMAC. Due to its detailed representation of aerosol mixing state, it is especially useful for simulating wet and dry removal of aerosol particles, aerosol-induced formation of cloud droplets and ice crystals as well as aerosol–radiation interactions. Besides studies on these fundamental processes, we also plan to use MADE3 for a reassessment of the climate effects of anthropogenic aerosol perturbations.
ISSN:1991-9603
1991-962X
1991-959X
1991-9603
1991-962X
DOI:10.5194/gmd-12-541-2019