Loading…

A fate-alternating transitional regime in contracting liquid filaments

The fate of a contracting liquid filament depends on the Ohnesorge number ( $Oh$ ), the initial aspect ratio ( $\unicode[STIX]{x1D6E4}$ ) and surface perturbation. Generally, it is believed that there exists a critical aspect ratio $\unicode[STIX]{x1D6E4}_{c}(Oh)$ such that longer filaments break up...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2019-02, Vol.860, p.640-653
Main Authors: Wang, F., Contò, F. P., Naz, N., Castrejón-Pita, J. R., Castrejón-Pita, A. A., Bailey, C. G., Wang, W., Feng, J. J., Sui, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fate of a contracting liquid filament depends on the Ohnesorge number ( $Oh$ ), the initial aspect ratio ( $\unicode[STIX]{x1D6E4}$ ) and surface perturbation. Generally, it is believed that there exists a critical aspect ratio $\unicode[STIX]{x1D6E4}_{c}(Oh)$ such that longer filaments break up and shorter ones recoil into a single drop. Through computational and experimental studies, we report a transitional regime for filaments with a broad range of intermediate aspect ratios, where there exist multiple $\unicode[STIX]{x1D6E4}_{c}$ thresholds at which a novel breakup mode alternates with no-break mode. We develop a simple model considering the superposition of capillary waves, which can predict the complicated new phase diagram. In this model, the breakup results from constructive interference between the capillary waves that originate from the ends of the filament.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2018.855