Loading…

Splitter Sets and k -Radius Sequences

Splitter sets are closely related to lattice tilings, and have applications in flash memories and conflict-avoiding codes. The study of k-radius sequences was motivated by some problems occurring in large data transfer. It is observed that the existence of splitter sets yields k-radius sequences of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2017-12, Vol.63 (12), p.7633-7645
Main Authors: Zhang, Tao, Zhang, Xiande, Ge, Gennian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-b490a00b63d3f429c3a7f9a82c9532cd310f8c5b742455137208f210430571583
cites cdi_FETCH-LOGICAL-c291t-b490a00b63d3f429c3a7f9a82c9532cd310f8c5b742455137208f210430571583
container_end_page 7645
container_issue 12
container_start_page 7633
container_title IEEE transactions on information theory
container_volume 63
creator Zhang, Tao
Zhang, Xiande
Ge, Gennian
description Splitter sets are closely related to lattice tilings, and have applications in flash memories and conflict-avoiding codes. The study of k-radius sequences was motivated by some problems occurring in large data transfer. It is observed that the existence of splitter sets yields k-radius sequences of short length. In this paper, we obtain several new results contributing to splitter sets and k-radius sequences. We give some new constructions of perfect splitter sets, as well as some nonexistence results on them. As a byproduct, we obtain some new results on optimal conflict-avoiding codes. Furthermore, we provide several explicit constructions of short k-radius sequences for certain values of n, by establishing the existence of k-additive sequences. In particular, we show that for any fixed k, there exist infinitely many values of n such that f k (n) = 2k/n 2 + O(n), where f k (n) denotes the shortest length of an n-ary k-radius sequence. This result partially affirms a conjecture posed by Bondy, Lonc, and Rza̧żewski.
doi_str_mv 10.1109/TIT.2017.2695219
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2174326379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7903619</ieee_id><sourcerecordid>2174326379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b490a00b63d3f429c3a7f9a82c9532cd310f8c5b742455137208f210430571583</originalsourceid><addsrcrecordid>eNo9kM1LxDAQxYMoWFfvgpeCeOw6M0ma5iiLHwsLglvPIU1T6Lp2a9I9-N-bZRdPw8x7bx78GLtFmCOCfqyX9ZwA1ZxKLQn1GctQSlXoUopzlgFgVWghqkt2FeMmrUIiZexhPW77afIhX_sp5nZo86-8-LBtv4_p9LP3g_Pxml10dhv9zWnO2OfLc714K1bvr8vF06pwpHEqGqHBAjQlb3knSDtuVadtRU5LTq7lCF3lZKMECSmRK4KqIwTBQSqUFZ-x--PfMexSdZzMZrcPQ6o0hEpwKrnSyQVHlwu7GIPvzBj6bxt-DYI5wDAJhjnAMCcYKXJ3jPTe-3-70sDLpP4BZGtW2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174326379</pqid></control><display><type>article</type><title>Splitter Sets and k -Radius Sequences</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Tao ; Zhang, Xiande ; Ge, Gennian</creator><creatorcontrib>Zhang, Tao ; Zhang, Xiande ; Ge, Gennian</creatorcontrib><description>Splitter sets are closely related to lattice tilings, and have applications in flash memories and conflict-avoiding codes. The study of k-radius sequences was motivated by some problems occurring in large data transfer. It is observed that the existence of splitter sets yields k-radius sequences of short length. In this paper, we obtain several new results contributing to splitter sets and k-radius sequences. We give some new constructions of perfect splitter sets, as well as some nonexistence results on them. As a byproduct, we obtain some new results on optimal conflict-avoiding codes. Furthermore, we provide several explicit constructions of short k-radius sequences for certain values of n, by establishing the existence of k-additive sequences. In particular, we show that for any fixed k, there exist infinitely many values of n such that f k (n) = 2k/n 2 + O(n), where f k (n) denotes the shortest length of an n-ary k-radius sequence. This result partially affirms a conjecture posed by Bondy, Lonc, and Rza̧żewski.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2017.2695219</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -additive sequences ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -radius sequences ; conflict-avoiding codes ; Context ; Data transfer ; Data transfer (computers) ; Electronic mail ; Flash memories ; flash memory ; Indexes ; lattice tilings ; Lattices ; Splitter sets</subject><ispartof>IEEE transactions on information theory, 2017-12, Vol.63 (12), p.7633-7645</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b490a00b63d3f429c3a7f9a82c9532cd310f8c5b742455137208f210430571583</citedby><cites>FETCH-LOGICAL-c291t-b490a00b63d3f429c3a7f9a82c9532cd310f8c5b742455137208f210430571583</cites><orcidid>0000-0003-4234-3610 ; 0000-0002-1535-0754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7903619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhang, Xiande</creatorcontrib><creatorcontrib>Ge, Gennian</creatorcontrib><title>Splitter Sets and k -Radius Sequences</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Splitter sets are closely related to lattice tilings, and have applications in flash memories and conflict-avoiding codes. The study of k-radius sequences was motivated by some problems occurring in large data transfer. It is observed that the existence of splitter sets yields k-radius sequences of short length. In this paper, we obtain several new results contributing to splitter sets and k-radius sequences. We give some new constructions of perfect splitter sets, as well as some nonexistence results on them. As a byproduct, we obtain some new results on optimal conflict-avoiding codes. Furthermore, we provide several explicit constructions of short k-radius sequences for certain values of n, by establishing the existence of k-additive sequences. In particular, we show that for any fixed k, there exist infinitely many values of n such that f k (n) = 2k/n 2 + O(n), where f k (n) denotes the shortest length of an n-ary k-radius sequence. This result partially affirms a conjecture posed by Bondy, Lonc, and Rza̧żewski.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -additive sequences</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -radius sequences</subject><subject>conflict-avoiding codes</subject><subject>Context</subject><subject>Data transfer</subject><subject>Data transfer (computers)</subject><subject>Electronic mail</subject><subject>Flash memories</subject><subject>flash memory</subject><subject>Indexes</subject><subject>lattice tilings</subject><subject>Lattices</subject><subject>Splitter sets</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LxDAQxYMoWFfvgpeCeOw6M0ma5iiLHwsLglvPIU1T6Lp2a9I9-N-bZRdPw8x7bx78GLtFmCOCfqyX9ZwA1ZxKLQn1GctQSlXoUopzlgFgVWghqkt2FeMmrUIiZexhPW77afIhX_sp5nZo86-8-LBtv4_p9LP3g_Pxml10dhv9zWnO2OfLc714K1bvr8vF06pwpHEqGqHBAjQlb3knSDtuVadtRU5LTq7lCF3lZKMECSmRK4KqIwTBQSqUFZ-x--PfMexSdZzMZrcPQ6o0hEpwKrnSyQVHlwu7GIPvzBj6bxt-DYI5wDAJhjnAMCcYKXJ3jPTe-3-70sDLpP4BZGtW2w</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Zhang, Tao</creator><creator>Zhang, Xiande</creator><creator>Ge, Gennian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4234-3610</orcidid><orcidid>https://orcid.org/0000-0002-1535-0754</orcidid></search><sort><creationdate>20171201</creationdate><title>Splitter Sets and k -Radius Sequences</title><author>Zhang, Tao ; Zhang, Xiande ; Ge, Gennian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b490a00b63d3f429c3a7f9a82c9532cd310f8c5b742455137208f210430571583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -additive sequences</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -radius sequences</topic><topic>conflict-avoiding codes</topic><topic>Context</topic><topic>Data transfer</topic><topic>Data transfer (computers)</topic><topic>Electronic mail</topic><topic>Flash memories</topic><topic>flash memory</topic><topic>Indexes</topic><topic>lattice tilings</topic><topic>Lattices</topic><topic>Splitter sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhang, Xiande</creatorcontrib><creatorcontrib>Ge, Gennian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tao</au><au>Zhang, Xiande</au><au>Ge, Gennian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Splitter Sets and k -Radius Sequences</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>63</volume><issue>12</issue><spage>7633</spage><epage>7645</epage><pages>7633-7645</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Splitter sets are closely related to lattice tilings, and have applications in flash memories and conflict-avoiding codes. The study of k-radius sequences was motivated by some problems occurring in large data transfer. It is observed that the existence of splitter sets yields k-radius sequences of short length. In this paper, we obtain several new results contributing to splitter sets and k-radius sequences. We give some new constructions of perfect splitter sets, as well as some nonexistence results on them. As a byproduct, we obtain some new results on optimal conflict-avoiding codes. Furthermore, we provide several explicit constructions of short k-radius sequences for certain values of n, by establishing the existence of k-additive sequences. In particular, we show that for any fixed k, there exist infinitely many values of n such that f k (n) = 2k/n 2 + O(n), where f k (n) denotes the shortest length of an n-ary k-radius sequence. This result partially affirms a conjecture posed by Bondy, Lonc, and Rza̧żewski.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2017.2695219</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4234-3610</orcidid><orcidid>https://orcid.org/0000-0002-1535-0754</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2017-12, Vol.63 (12), p.7633-7645
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_2174326379
source IEEE Electronic Library (IEL) Journals
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -additive sequences
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -radius sequences
conflict-avoiding codes
Context
Data transfer
Data transfer (computers)
Electronic mail
Flash memories
flash memory
Indexes
lattice tilings
Lattices
Splitter sets
title Splitter Sets and k -Radius Sequences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A01%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Splitter%20Sets%20and%20k%20-Radius%20Sequences&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Zhang,%20Tao&rft.date=2017-12-01&rft.volume=63&rft.issue=12&rft.spage=7633&rft.epage=7645&rft.pages=7633-7645&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2017.2695219&rft_dat=%3Cproquest_ieee_%3E2174326379%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-b490a00b63d3f429c3a7f9a82c9532cd310f8c5b742455137208f210430571583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174326379&rft_id=info:pmid/&rft_ieee_id=7903619&rfr_iscdi=true