Loading…
Layered Space Shift Keying Modulation Over MIMO Channels
Space shift keying (SSK) modulation is an emerging transmission technique for multiple-input multiple-output (MIMO) wireless channels, which exploits the spatial domain to convey information. In this paper, we present a layered space shift keying (LSSK) modulation scheme to fully exploit the spatial...
Saved in:
Published in: | IEEE transactions on vehicular technology 2017-01, Vol.66 (1), p.159-174 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Space shift keying (SSK) modulation is an emerging transmission technique for multiple-input multiple-output (MIMO) wireless channels, which exploits the spatial domain to convey information. In this paper, we present a layered space shift keying (LSSK) modulation scheme to fully exploit the spatial domain to transmit information bits, where a layered architecture is developed to achieve spatial multiplexing transmission in an SSK system. Specifically, LSSK leverages the rotated signals predetermined at the transceiver to identify different layers and improve the bit-error-rate (BER) performance. The layered signals are directly generated by the proposed LSSK modulation method with a low computational overhead. Furthermore, we propose a layered-and-joint (LJ) near-optimal detection algorithm based on the layered architecture of LSSK to reduce the detection complexity. In LJ detection, layered detection is performed to find a set of detection candidates for each layer, and then, joint detection is performed with these candidates. We show that the performance of LJ detection is quite close to that of optimal maximum-likelihood detection with significantly reduced detection complexity for high-spectrum-efficiency scenarios. Results demonstrate that the proposed LSSK scheme substantially improves the spectrum efficiency of an SSK system and outperforms other existing MIMO schemes. |
---|---|
ISSN: | 0018-9545 1939-9359 |
DOI: | 10.1109/TVT.2016.2539283 |