Loading…
Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control
This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel pr...
Saved in:
Published in: | IEEE transactions on biomedical circuits and systems 2017-08, Vol.11 (4), p.729-742 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23 |
container_end_page | 742 |
container_issue | 4 |
container_start_page | 729 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 11 |
creator | Xilin Liu Milin Zhang Richardson, Andrew G. Lucas, Timothy H. Van der Spiegel, Jan |
description | This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments. |
doi_str_mv | 10.1109/TBCAS.2016.2622738 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2174437107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7786863</ieee_id><sourcerecordid>1853741138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23</originalsourceid><addsrcrecordid>eNpdkctuEzEUhkeIipaWFwAJWWLDgkl9m7G9bKYpjRQuUotYjox93Lqa2KntkcgD8N5MmtAFq3Ok8_3_4nxV9ZbgGSFYnd_Ou4ubGcWkndGWUsHki-qEKI5rpRR-udsZrXnDm-Pqdc4PGDctVfRVdUwlpqpl-KT6cwnZ3wUUHdKoG2IGW69i3HxCc299AlN8DHpA86R9QF-0ufcB0DIUSE4bQDfbXGCNfvpyjxYB0t0WLZzzxkMo6CuMacpegS5jArT4XZJ-KkQ6WPR9eYm6GEqKw1l15PSQ4c1hnlY_rha33XW9-vZ52V2sasM5L7V1RINWAJoRI4jj1AnjVMMltVIKo2hjJQirndSGGyKdVFoA05IKaw1lp9XHfe8mxccRcunXPhsYBh0gjrknsmGCE8LkhH74D32IY5pekXtKBOdMECwmiu4pk2LOCVy_SX6t07YnuN9J6p8k9TtJ_UHSFHp_qB5_rcE-R_5ZmYB3e8ADwPNZCNnKlrG_yXiWlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174437107</pqid></control><display><type>article</type><title>Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control</title><source>IEEE Xplore (Online service)</source><creator>Xilin Liu ; Milin Zhang ; Richardson, Andrew G. ; Lucas, Timothy H. ; Van der Spiegel, Jan</creator><creatorcontrib>Xilin Liu ; Milin Zhang ; Richardson, Andrew G. ; Lucas, Timothy H. ; Van der Spiegel, Jan</creatorcontrib><description>This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2016.2622738</identifier><identifier>PMID: 28029630</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Action potential ; Action Potentials ; Analog circuits ; Animals ; Bluetooth ; Body mass ; Brain ; Brain machine interface ; Brain-Computer Interfaces ; closed-loop ; CMOS ; Configurations ; Converters ; Digitization ; Electric potential ; Electrophysiological recording ; Energy efficiency ; Equipment Design ; Feature extraction ; low-power ; Man-machine interfaces ; Microcontrollers ; Nervous system ; neural feature extraction ; neural recording ; neural stimulation ; Neurons - physiology ; Neurophysiology ; Neurophysiology - instrumentation ; Neuroscience ; Oscillators ; Programmable logic controllers ; Proportional integral derivative ; proportional-integral-derivative (PID) ; Recording ; Stimulators ; System on chip ; Topology ; Tuning ; Windows (intervals) ; Wireless communication ; Wireless Technology</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2017-08, Vol.11 (4), p.729-742</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23</citedby><cites>FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23</cites><orcidid>0000-0001-6915-0734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7786863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28029630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xilin Liu</creatorcontrib><creatorcontrib>Milin Zhang</creatorcontrib><creatorcontrib>Richardson, Andrew G.</creatorcontrib><creatorcontrib>Lucas, Timothy H.</creatorcontrib><creatorcontrib>Van der Spiegel, Jan</creatorcontrib><title>Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Analog circuits</subject><subject>Animals</subject><subject>Bluetooth</subject><subject>Body mass</subject><subject>Brain</subject><subject>Brain machine interface</subject><subject>Brain-Computer Interfaces</subject><subject>closed-loop</subject><subject>CMOS</subject><subject>Configurations</subject><subject>Converters</subject><subject>Digitization</subject><subject>Electric potential</subject><subject>Electrophysiological recording</subject><subject>Energy efficiency</subject><subject>Equipment Design</subject><subject>Feature extraction</subject><subject>low-power</subject><subject>Man-machine interfaces</subject><subject>Microcontrollers</subject><subject>Nervous system</subject><subject>neural feature extraction</subject><subject>neural recording</subject><subject>neural stimulation</subject><subject>Neurons - physiology</subject><subject>Neurophysiology</subject><subject>Neurophysiology - instrumentation</subject><subject>Neuroscience</subject><subject>Oscillators</subject><subject>Programmable logic controllers</subject><subject>Proportional integral derivative</subject><subject>proportional-integral-derivative (PID)</subject><subject>Recording</subject><subject>Stimulators</subject><subject>System on chip</subject><subject>Topology</subject><subject>Tuning</subject><subject>Windows (intervals)</subject><subject>Wireless communication</subject><subject>Wireless Technology</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkctuEzEUhkeIipaWFwAJWWLDgkl9m7G9bKYpjRQuUotYjox93Lqa2KntkcgD8N5MmtAFq3Ok8_3_4nxV9ZbgGSFYnd_Ou4ubGcWkndGWUsHki-qEKI5rpRR-udsZrXnDm-Pqdc4PGDctVfRVdUwlpqpl-KT6cwnZ3wUUHdKoG2IGW69i3HxCc299AlN8DHpA86R9QF-0ufcB0DIUSE4bQDfbXGCNfvpyjxYB0t0WLZzzxkMo6CuMacpegS5jArT4XZJ-KkQ6WPR9eYm6GEqKw1l15PSQ4c1hnlY_rha33XW9-vZ52V2sasM5L7V1RINWAJoRI4jj1AnjVMMltVIKo2hjJQirndSGGyKdVFoA05IKaw1lp9XHfe8mxccRcunXPhsYBh0gjrknsmGCE8LkhH74D32IY5pekXtKBOdMECwmiu4pk2LOCVy_SX6t07YnuN9J6p8k9TtJ_UHSFHp_qB5_rcE-R_5ZmYB3e8ADwPNZCNnKlrG_yXiWlA</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Xilin Liu</creator><creator>Milin Zhang</creator><creator>Richardson, Andrew G.</creator><creator>Lucas, Timothy H.</creator><creator>Van der Spiegel, Jan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6915-0734</orcidid></search><sort><creationdate>20170801</creationdate><title>Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control</title><author>Xilin Liu ; Milin Zhang ; Richardson, Andrew G. ; Lucas, Timothy H. ; Van der Spiegel, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Analog circuits</topic><topic>Animals</topic><topic>Bluetooth</topic><topic>Body mass</topic><topic>Brain</topic><topic>Brain machine interface</topic><topic>Brain-Computer Interfaces</topic><topic>closed-loop</topic><topic>CMOS</topic><topic>Configurations</topic><topic>Converters</topic><topic>Digitization</topic><topic>Electric potential</topic><topic>Electrophysiological recording</topic><topic>Energy efficiency</topic><topic>Equipment Design</topic><topic>Feature extraction</topic><topic>low-power</topic><topic>Man-machine interfaces</topic><topic>Microcontrollers</topic><topic>Nervous system</topic><topic>neural feature extraction</topic><topic>neural recording</topic><topic>neural stimulation</topic><topic>Neurons - physiology</topic><topic>Neurophysiology</topic><topic>Neurophysiology - instrumentation</topic><topic>Neuroscience</topic><topic>Oscillators</topic><topic>Programmable logic controllers</topic><topic>Proportional integral derivative</topic><topic>proportional-integral-derivative (PID)</topic><topic>Recording</topic><topic>Stimulators</topic><topic>System on chip</topic><topic>Topology</topic><topic>Tuning</topic><topic>Windows (intervals)</topic><topic>Wireless communication</topic><topic>Wireless Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xilin Liu</creatorcontrib><creatorcontrib>Milin Zhang</creatorcontrib><creatorcontrib>Richardson, Andrew G.</creatorcontrib><creatorcontrib>Lucas, Timothy H.</creatorcontrib><creatorcontrib>Van der Spiegel, Jan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xilin Liu</au><au>Milin Zhang</au><au>Richardson, Andrew G.</au><au>Lucas, Timothy H.</au><au>Van der Spiegel, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>729</spage><epage>742</epage><pages>729-742</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28029630</pmid><doi>10.1109/TBCAS.2016.2622738</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6915-0734</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2017-08, Vol.11 (4), p.729-742 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_proquest_journals_2174437107 |
source | IEEE Xplore (Online service) |
subjects | Action potential Action Potentials Analog circuits Animals Bluetooth Body mass Brain Brain machine interface Brain-Computer Interfaces closed-loop CMOS Configurations Converters Digitization Electric potential Electrophysiological recording Energy efficiency Equipment Design Feature extraction low-power Man-machine interfaces Microcontrollers Nervous system neural feature extraction neural recording neural stimulation Neurons - physiology Neurophysiology Neurophysiology - instrumentation Neuroscience Oscillators Programmable logic controllers Proportional integral derivative proportional-integral-derivative (PID) Recording Stimulators System on chip Topology Tuning Windows (intervals) Wireless communication Wireless Technology |
title | Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Closed-Loop,%20Bidirectional%20Brain%20Machine%20Interface%20System%20With%20Energy%20Efficient%20Neural%20Feature%20Extraction%20and%20PID%20Control&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Xilin%20Liu&rft.date=2017-08-01&rft.volume=11&rft.issue=4&rft.spage=729&rft.epage=742&rft.pages=729-742&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2016.2622738&rft_dat=%3Cproquest_ieee_%3E1853741138%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174437107&rft_id=info:pmid/28029630&rft_ieee_id=7786863&rfr_iscdi=true |