Loading…

Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control

This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel pr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical circuits and systems 2017-08, Vol.11 (4), p.729-742
Main Authors: Xilin Liu, Milin Zhang, Richardson, Andrew G., Lucas, Timothy H., Van der Spiegel, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23
cites cdi_FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23
container_end_page 742
container_issue 4
container_start_page 729
container_title IEEE transactions on biomedical circuits and systems
container_volume 11
creator Xilin Liu
Milin Zhang
Richardson, Andrew G.
Lucas, Timothy H.
Van der Spiegel, Jan
description This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.
doi_str_mv 10.1109/TBCAS.2016.2622738
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2174437107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7786863</ieee_id><sourcerecordid>1853741138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23</originalsourceid><addsrcrecordid>eNpdkctuEzEUhkeIipaWFwAJWWLDgkl9m7G9bKYpjRQuUotYjox93Lqa2KntkcgD8N5MmtAFq3Ok8_3_4nxV9ZbgGSFYnd_Ou4ubGcWkndGWUsHki-qEKI5rpRR-udsZrXnDm-Pqdc4PGDctVfRVdUwlpqpl-KT6cwnZ3wUUHdKoG2IGW69i3HxCc299AlN8DHpA86R9QF-0ufcB0DIUSE4bQDfbXGCNfvpyjxYB0t0WLZzzxkMo6CuMacpegS5jArT4XZJ-KkQ6WPR9eYm6GEqKw1l15PSQ4c1hnlY_rha33XW9-vZ52V2sasM5L7V1RINWAJoRI4jj1AnjVMMltVIKo2hjJQirndSGGyKdVFoA05IKaw1lp9XHfe8mxccRcunXPhsYBh0gjrknsmGCE8LkhH74D32IY5pekXtKBOdMECwmiu4pk2LOCVy_SX6t07YnuN9J6p8k9TtJ_UHSFHp_qB5_rcE-R_5ZmYB3e8ADwPNZCNnKlrG_yXiWlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174437107</pqid></control><display><type>article</type><title>Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control</title><source>IEEE Xplore (Online service)</source><creator>Xilin Liu ; Milin Zhang ; Richardson, Andrew G. ; Lucas, Timothy H. ; Van der Spiegel, Jan</creator><creatorcontrib>Xilin Liu ; Milin Zhang ; Richardson, Andrew G. ; Lucas, Timothy H. ; Van der Spiegel, Jan</creatorcontrib><description>This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2016.2622738</identifier><identifier>PMID: 28029630</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Action potential ; Action Potentials ; Analog circuits ; Animals ; Bluetooth ; Body mass ; Brain ; Brain machine interface ; Brain-Computer Interfaces ; closed-loop ; CMOS ; Configurations ; Converters ; Digitization ; Electric potential ; Electrophysiological recording ; Energy efficiency ; Equipment Design ; Feature extraction ; low-power ; Man-machine interfaces ; Microcontrollers ; Nervous system ; neural feature extraction ; neural recording ; neural stimulation ; Neurons - physiology ; Neurophysiology ; Neurophysiology - instrumentation ; Neuroscience ; Oscillators ; Programmable logic controllers ; Proportional integral derivative ; proportional-integral-derivative (PID) ; Recording ; Stimulators ; System on chip ; Topology ; Tuning ; Windows (intervals) ; Wireless communication ; Wireless Technology</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2017-08, Vol.11 (4), p.729-742</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23</citedby><cites>FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23</cites><orcidid>0000-0001-6915-0734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7786863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28029630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xilin Liu</creatorcontrib><creatorcontrib>Milin Zhang</creatorcontrib><creatorcontrib>Richardson, Andrew G.</creatorcontrib><creatorcontrib>Lucas, Timothy H.</creatorcontrib><creatorcontrib>Van der Spiegel, Jan</creatorcontrib><title>Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Analog circuits</subject><subject>Animals</subject><subject>Bluetooth</subject><subject>Body mass</subject><subject>Brain</subject><subject>Brain machine interface</subject><subject>Brain-Computer Interfaces</subject><subject>closed-loop</subject><subject>CMOS</subject><subject>Configurations</subject><subject>Converters</subject><subject>Digitization</subject><subject>Electric potential</subject><subject>Electrophysiological recording</subject><subject>Energy efficiency</subject><subject>Equipment Design</subject><subject>Feature extraction</subject><subject>low-power</subject><subject>Man-machine interfaces</subject><subject>Microcontrollers</subject><subject>Nervous system</subject><subject>neural feature extraction</subject><subject>neural recording</subject><subject>neural stimulation</subject><subject>Neurons - physiology</subject><subject>Neurophysiology</subject><subject>Neurophysiology - instrumentation</subject><subject>Neuroscience</subject><subject>Oscillators</subject><subject>Programmable logic controllers</subject><subject>Proportional integral derivative</subject><subject>proportional-integral-derivative (PID)</subject><subject>Recording</subject><subject>Stimulators</subject><subject>System on chip</subject><subject>Topology</subject><subject>Tuning</subject><subject>Windows (intervals)</subject><subject>Wireless communication</subject><subject>Wireless Technology</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkctuEzEUhkeIipaWFwAJWWLDgkl9m7G9bKYpjRQuUotYjox93Lqa2KntkcgD8N5MmtAFq3Ok8_3_4nxV9ZbgGSFYnd_Ou4ubGcWkndGWUsHki-qEKI5rpRR-udsZrXnDm-Pqdc4PGDctVfRVdUwlpqpl-KT6cwnZ3wUUHdKoG2IGW69i3HxCc299AlN8DHpA86R9QF-0ufcB0DIUSE4bQDfbXGCNfvpyjxYB0t0WLZzzxkMo6CuMacpegS5jArT4XZJ-KkQ6WPR9eYm6GEqKw1l15PSQ4c1hnlY_rha33XW9-vZ52V2sasM5L7V1RINWAJoRI4jj1AnjVMMltVIKo2hjJQirndSGGyKdVFoA05IKaw1lp9XHfe8mxccRcunXPhsYBh0gjrknsmGCE8LkhH74D32IY5pekXtKBOdMECwmiu4pk2LOCVy_SX6t07YnuN9J6p8k9TtJ_UHSFHp_qB5_rcE-R_5ZmYB3e8ADwPNZCNnKlrG_yXiWlA</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Xilin Liu</creator><creator>Milin Zhang</creator><creator>Richardson, Andrew G.</creator><creator>Lucas, Timothy H.</creator><creator>Van der Spiegel, Jan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6915-0734</orcidid></search><sort><creationdate>20170801</creationdate><title>Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control</title><author>Xilin Liu ; Milin Zhang ; Richardson, Andrew G. ; Lucas, Timothy H. ; Van der Spiegel, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Analog circuits</topic><topic>Animals</topic><topic>Bluetooth</topic><topic>Body mass</topic><topic>Brain</topic><topic>Brain machine interface</topic><topic>Brain-Computer Interfaces</topic><topic>closed-loop</topic><topic>CMOS</topic><topic>Configurations</topic><topic>Converters</topic><topic>Digitization</topic><topic>Electric potential</topic><topic>Electrophysiological recording</topic><topic>Energy efficiency</topic><topic>Equipment Design</topic><topic>Feature extraction</topic><topic>low-power</topic><topic>Man-machine interfaces</topic><topic>Microcontrollers</topic><topic>Nervous system</topic><topic>neural feature extraction</topic><topic>neural recording</topic><topic>neural stimulation</topic><topic>Neurons - physiology</topic><topic>Neurophysiology</topic><topic>Neurophysiology - instrumentation</topic><topic>Neuroscience</topic><topic>Oscillators</topic><topic>Programmable logic controllers</topic><topic>Proportional integral derivative</topic><topic>proportional-integral-derivative (PID)</topic><topic>Recording</topic><topic>Stimulators</topic><topic>System on chip</topic><topic>Topology</topic><topic>Tuning</topic><topic>Windows (intervals)</topic><topic>Wireless communication</topic><topic>Wireless Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xilin Liu</creatorcontrib><creatorcontrib>Milin Zhang</creatorcontrib><creatorcontrib>Richardson, Andrew G.</creatorcontrib><creatorcontrib>Lucas, Timothy H.</creatorcontrib><creatorcontrib>Van der Spiegel, Jan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xilin Liu</au><au>Milin Zhang</au><au>Richardson, Andrew G.</au><au>Lucas, Timothy H.</au><au>Van der Spiegel, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>729</spage><epage>742</epage><pages>729-742</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28029630</pmid><doi>10.1109/TBCAS.2016.2622738</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6915-0734</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2017-08, Vol.11 (4), p.729-742
issn 1932-4545
1940-9990
language eng
recordid cdi_proquest_journals_2174437107
source IEEE Xplore (Online service)
subjects Action potential
Action Potentials
Analog circuits
Animals
Bluetooth
Body mass
Brain
Brain machine interface
Brain-Computer Interfaces
closed-loop
CMOS
Configurations
Converters
Digitization
Electric potential
Electrophysiological recording
Energy efficiency
Equipment Design
Feature extraction
low-power
Man-machine interfaces
Microcontrollers
Nervous system
neural feature extraction
neural recording
neural stimulation
Neurons - physiology
Neurophysiology
Neurophysiology - instrumentation
Neuroscience
Oscillators
Programmable logic controllers
Proportional integral derivative
proportional-integral-derivative (PID)
Recording
Stimulators
System on chip
Topology
Tuning
Windows (intervals)
Wireless communication
Wireless Technology
title Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Closed-Loop,%20Bidirectional%20Brain%20Machine%20Interface%20System%20With%20Energy%20Efficient%20Neural%20Feature%20Extraction%20and%20PID%20Control&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Xilin%20Liu&rft.date=2017-08-01&rft.volume=11&rft.issue=4&rft.spage=729&rft.epage=742&rft.pages=729-742&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2016.2622738&rft_dat=%3Cproquest_ieee_%3E1853741138%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-df1aea9eea31c71f42f7cf95482d887c925d8e7daf8ac4c18f89a7e3a827ddc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174437107&rft_id=info:pmid/28029630&rft_ieee_id=7786863&rfr_iscdi=true