Loading…

Coupled Electrical-Thermal-Mechanical Simulation for the Reliability Analysis of Large-Scale 3-D Interconnects

A multiphysics simulation technique based on the finite element method is developed for the reliability analysis of interconnects. The multiphysics simulation characterizes multidisciplinary, including electrical, thermal, and mechanical, aspects of interconnects. It is well known that the major bot...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2017-02, Vol.7 (2), p.229-237
Main Authors: Lu, Tianjian, Jin, Jian-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683
cites cdi_FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683
container_end_page 237
container_issue 2
container_start_page 229
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 7
creator Lu, Tianjian
Jin, Jian-Ming
description A multiphysics simulation technique based on the finite element method is developed for the reliability analysis of interconnects. The multiphysics simulation characterizes multidisciplinary, including electrical, thermal, and mechanical, aspects of interconnects. It is well known that the major bottleneck preventing 3-D simulations from gaining further popularity is the computational efficiency in dealing with practically large-scale problems. To address this problem, the proposed multiphysics simulation is devised for analyzing large-scale problems with a significantly improved computational efficiency through utilizing a domain decomposition scheme called the finite element tearing and interconnecting, parallel computing, and the localized nature of thermal stresses in the interconnect structures. Both the capability and efficiency of the multiphysics simulation are demonstrated through analyzing large-scale interconnect structures including arrays of solder bumps and bonding wires. Detailed temperature distributions and localized stresses of large amplitude are obtained through the proposed simulation in a highly efficient manner.
doi_str_mv 10.1109/TCPMT.2016.2639359
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2174444274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7820068</ieee_id><sourcerecordid>2174444274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683</originalsourceid><addsrcrecordid>eNo9UE1PAjEQbYwmEuUP6KWJ58V-bHe3R4KoJBCNrOemlKmULFtsdw_8e4sQ5jBvMnlvPh5CD5SMKCXyuZ58LuoRI7QYsYJLLuQVGjAqiozLSlxfakFu0TDGLUkhKlISPkDtxPf7BtZ42oDpgjO6yeoNhF3CBZiNbo8tvHS7vtGd8y22PuBuA_gLGqdXrnHdAY9b3Ryii9hbPNfhB7JlUgHm2QuetR0E49s2zY_36MbqJsLwjHfo-3VaT96z-cfbbDKeZ4ZJ0WWWsUJXFZcpUamFtTkYQWlJWF4RKIlZcVutrJai1EUuWZ5eNJZZkq-ZKSp-h55Oc_fB__YQO7X1fUhXRsVomadgZZ5Y7MQywccYwKp9cDsdDooSdbRW_Vurjtaqs7VJ9HgSOQC4CMqKEZIW_wGvN3TY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174444274</pqid></control><display><type>article</type><title>Coupled Electrical-Thermal-Mechanical Simulation for the Reliability Analysis of Large-Scale 3-D Interconnects</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lu, Tianjian ; Jin, Jian-Ming</creator><creatorcontrib>Lu, Tianjian ; Jin, Jian-Ming</creatorcontrib><description>A multiphysics simulation technique based on the finite element method is developed for the reliability analysis of interconnects. The multiphysics simulation characterizes multidisciplinary, including electrical, thermal, and mechanical, aspects of interconnects. It is well known that the major bottleneck preventing 3-D simulations from gaining further popularity is the computational efficiency in dealing with practically large-scale problems. To address this problem, the proposed multiphysics simulation is devised for analyzing large-scale problems with a significantly improved computational efficiency through utilizing a domain decomposition scheme called the finite element tearing and interconnecting, parallel computing, and the localized nature of thermal stresses in the interconnect structures. Both the capability and efficiency of the multiphysics simulation are demonstrated through analyzing large-scale interconnect structures including arrays of solder bumps and bonding wires. Detailed temperature distributions and localized stresses of large amplitude are obtained through the proposed simulation in a highly efficient manner.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2016.2639359</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bonding wire ; Computational efficiency ; Computational modeling ; Computer simulation ; Computing time ; domain decomposition ; Efficiency ; Finite element method ; finite element method (FEM) ; Integrated circuit interconnections ; Interconnections ; Mathematical analysis ; Mathematical model ; multiphysics modeling ; parallel computing ; Reliability ; Reliability analysis ; Simulation ; solder bump ; Strain ; Stress ; Thermal analysis ; Thermal simulation ; Thermal stress ; thermoelasticity</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2017-02, Vol.7 (2), p.229-237</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683</citedby><cites>FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683</cites><orcidid>0000-0002-5637-1391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7820068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lu, Tianjian</creatorcontrib><creatorcontrib>Jin, Jian-Ming</creatorcontrib><title>Coupled Electrical-Thermal-Mechanical Simulation for the Reliability Analysis of Large-Scale 3-D Interconnects</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>A multiphysics simulation technique based on the finite element method is developed for the reliability analysis of interconnects. The multiphysics simulation characterizes multidisciplinary, including electrical, thermal, and mechanical, aspects of interconnects. It is well known that the major bottleneck preventing 3-D simulations from gaining further popularity is the computational efficiency in dealing with practically large-scale problems. To address this problem, the proposed multiphysics simulation is devised for analyzing large-scale problems with a significantly improved computational efficiency through utilizing a domain decomposition scheme called the finite element tearing and interconnecting, parallel computing, and the localized nature of thermal stresses in the interconnect structures. Both the capability and efficiency of the multiphysics simulation are demonstrated through analyzing large-scale interconnect structures including arrays of solder bumps and bonding wires. Detailed temperature distributions and localized stresses of large amplitude are obtained through the proposed simulation in a highly efficient manner.</description><subject>Bonding wire</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>domain decomposition</subject><subject>Efficiency</subject><subject>Finite element method</subject><subject>finite element method (FEM)</subject><subject>Integrated circuit interconnections</subject><subject>Interconnections</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>multiphysics modeling</subject><subject>parallel computing</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Simulation</subject><subject>solder bump</subject><subject>Strain</subject><subject>Stress</subject><subject>Thermal analysis</subject><subject>Thermal simulation</subject><subject>Thermal stress</subject><subject>thermoelasticity</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9UE1PAjEQbYwmEuUP6KWJ58V-bHe3R4KoJBCNrOemlKmULFtsdw_8e4sQ5jBvMnlvPh5CD5SMKCXyuZ58LuoRI7QYsYJLLuQVGjAqiozLSlxfakFu0TDGLUkhKlISPkDtxPf7BtZ42oDpgjO6yeoNhF3CBZiNbo8tvHS7vtGd8y22PuBuA_gLGqdXrnHdAY9b3Ryii9hbPNfhB7JlUgHm2QuetR0E49s2zY_36MbqJsLwjHfo-3VaT96z-cfbbDKeZ4ZJ0WWWsUJXFZcpUamFtTkYQWlJWF4RKIlZcVutrJai1EUuWZ5eNJZZkq-ZKSp-h55Oc_fB__YQO7X1fUhXRsVomadgZZ5Y7MQywccYwKp9cDsdDooSdbRW_Vurjtaqs7VJ9HgSOQC4CMqKEZIW_wGvN3TY</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Lu, Tianjian</creator><creator>Jin, Jian-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5637-1391</orcidid></search><sort><creationdate>20170201</creationdate><title>Coupled Electrical-Thermal-Mechanical Simulation for the Reliability Analysis of Large-Scale 3-D Interconnects</title><author>Lu, Tianjian ; Jin, Jian-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bonding wire</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>domain decomposition</topic><topic>Efficiency</topic><topic>Finite element method</topic><topic>finite element method (FEM)</topic><topic>Integrated circuit interconnections</topic><topic>Interconnections</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>multiphysics modeling</topic><topic>parallel computing</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Simulation</topic><topic>solder bump</topic><topic>Strain</topic><topic>Stress</topic><topic>Thermal analysis</topic><topic>Thermal simulation</topic><topic>Thermal stress</topic><topic>thermoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Tianjian</creatorcontrib><creatorcontrib>Jin, Jian-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Tianjian</au><au>Jin, Jian-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Electrical-Thermal-Mechanical Simulation for the Reliability Analysis of Large-Scale 3-D Interconnects</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>7</volume><issue>2</issue><spage>229</spage><epage>237</epage><pages>229-237</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>A multiphysics simulation technique based on the finite element method is developed for the reliability analysis of interconnects. The multiphysics simulation characterizes multidisciplinary, including electrical, thermal, and mechanical, aspects of interconnects. It is well known that the major bottleneck preventing 3-D simulations from gaining further popularity is the computational efficiency in dealing with practically large-scale problems. To address this problem, the proposed multiphysics simulation is devised for analyzing large-scale problems with a significantly improved computational efficiency through utilizing a domain decomposition scheme called the finite element tearing and interconnecting, parallel computing, and the localized nature of thermal stresses in the interconnect structures. Both the capability and efficiency of the multiphysics simulation are demonstrated through analyzing large-scale interconnect structures including arrays of solder bumps and bonding wires. Detailed temperature distributions and localized stresses of large amplitude are obtained through the proposed simulation in a highly efficient manner.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2016.2639359</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5637-1391</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2017-02, Vol.7 (2), p.229-237
issn 2156-3950
2156-3985
language eng
recordid cdi_proquest_journals_2174444274
source IEEE Electronic Library (IEL) Journals
subjects Bonding wire
Computational efficiency
Computational modeling
Computer simulation
Computing time
domain decomposition
Efficiency
Finite element method
finite element method (FEM)
Integrated circuit interconnections
Interconnections
Mathematical analysis
Mathematical model
multiphysics modeling
parallel computing
Reliability
Reliability analysis
Simulation
solder bump
Strain
Stress
Thermal analysis
Thermal simulation
Thermal stress
thermoelasticity
title Coupled Electrical-Thermal-Mechanical Simulation for the Reliability Analysis of Large-Scale 3-D Interconnects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Electrical-Thermal-Mechanical%20Simulation%20for%20the%20Reliability%20Analysis%20of%20Large-Scale%203-D%20Interconnects&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Lu,%20Tianjian&rft.date=2017-02-01&rft.volume=7&rft.issue=2&rft.spage=229&rft.epage=237&rft.pages=229-237&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2016.2639359&rft_dat=%3Cproquest_ieee_%3E2174444274%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174444274&rft_id=info:pmid/&rft_ieee_id=7820068&rfr_iscdi=true