Loading…
Coupled Electrical-Thermal-Mechanical Simulation for the Reliability Analysis of Large-Scale 3-D Interconnects
A multiphysics simulation technique based on the finite element method is developed for the reliability analysis of interconnects. The multiphysics simulation characterizes multidisciplinary, including electrical, thermal, and mechanical, aspects of interconnects. It is well known that the major bot...
Saved in:
Published in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2017-02, Vol.7 (2), p.229-237 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683 |
container_end_page | 237 |
container_issue | 2 |
container_start_page | 229 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 7 |
creator | Lu, Tianjian Jin, Jian-Ming |
description | A multiphysics simulation technique based on the finite element method is developed for the reliability analysis of interconnects. The multiphysics simulation characterizes multidisciplinary, including electrical, thermal, and mechanical, aspects of interconnects. It is well known that the major bottleneck preventing 3-D simulations from gaining further popularity is the computational efficiency in dealing with practically large-scale problems. To address this problem, the proposed multiphysics simulation is devised for analyzing large-scale problems with a significantly improved computational efficiency through utilizing a domain decomposition scheme called the finite element tearing and interconnecting, parallel computing, and the localized nature of thermal stresses in the interconnect structures. Both the capability and efficiency of the multiphysics simulation are demonstrated through analyzing large-scale interconnect structures including arrays of solder bumps and bonding wires. Detailed temperature distributions and localized stresses of large amplitude are obtained through the proposed simulation in a highly efficient manner. |
doi_str_mv | 10.1109/TCPMT.2016.2639359 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2174444274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7820068</ieee_id><sourcerecordid>2174444274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683</originalsourceid><addsrcrecordid>eNo9UE1PAjEQbYwmEuUP6KWJ58V-bHe3R4KoJBCNrOemlKmULFtsdw_8e4sQ5jBvMnlvPh5CD5SMKCXyuZ58LuoRI7QYsYJLLuQVGjAqiozLSlxfakFu0TDGLUkhKlISPkDtxPf7BtZ42oDpgjO6yeoNhF3CBZiNbo8tvHS7vtGd8y22PuBuA_gLGqdXrnHdAY9b3Ryii9hbPNfhB7JlUgHm2QuetR0E49s2zY_36MbqJsLwjHfo-3VaT96z-cfbbDKeZ4ZJ0WWWsUJXFZcpUamFtTkYQWlJWF4RKIlZcVutrJai1EUuWZ5eNJZZkq-ZKSp-h55Oc_fB__YQO7X1fUhXRsVomadgZZ5Y7MQywccYwKp9cDsdDooSdbRW_Vurjtaqs7VJ9HgSOQC4CMqKEZIW_wGvN3TY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174444274</pqid></control><display><type>article</type><title>Coupled Electrical-Thermal-Mechanical Simulation for the Reliability Analysis of Large-Scale 3-D Interconnects</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lu, Tianjian ; Jin, Jian-Ming</creator><creatorcontrib>Lu, Tianjian ; Jin, Jian-Ming</creatorcontrib><description>A multiphysics simulation technique based on the finite element method is developed for the reliability analysis of interconnects. The multiphysics simulation characterizes multidisciplinary, including electrical, thermal, and mechanical, aspects of interconnects. It is well known that the major bottleneck preventing 3-D simulations from gaining further popularity is the computational efficiency in dealing with practically large-scale problems. To address this problem, the proposed multiphysics simulation is devised for analyzing large-scale problems with a significantly improved computational efficiency through utilizing a domain decomposition scheme called the finite element tearing and interconnecting, parallel computing, and the localized nature of thermal stresses in the interconnect structures. Both the capability and efficiency of the multiphysics simulation are demonstrated through analyzing large-scale interconnect structures including arrays of solder bumps and bonding wires. Detailed temperature distributions and localized stresses of large amplitude are obtained through the proposed simulation in a highly efficient manner.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2016.2639359</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bonding wire ; Computational efficiency ; Computational modeling ; Computer simulation ; Computing time ; domain decomposition ; Efficiency ; Finite element method ; finite element method (FEM) ; Integrated circuit interconnections ; Interconnections ; Mathematical analysis ; Mathematical model ; multiphysics modeling ; parallel computing ; Reliability ; Reliability analysis ; Simulation ; solder bump ; Strain ; Stress ; Thermal analysis ; Thermal simulation ; Thermal stress ; thermoelasticity</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2017-02, Vol.7 (2), p.229-237</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683</citedby><cites>FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683</cites><orcidid>0000-0002-5637-1391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7820068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lu, Tianjian</creatorcontrib><creatorcontrib>Jin, Jian-Ming</creatorcontrib><title>Coupled Electrical-Thermal-Mechanical Simulation for the Reliability Analysis of Large-Scale 3-D Interconnects</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>A multiphysics simulation technique based on the finite element method is developed for the reliability analysis of interconnects. The multiphysics simulation characterizes multidisciplinary, including electrical, thermal, and mechanical, aspects of interconnects. It is well known that the major bottleneck preventing 3-D simulations from gaining further popularity is the computational efficiency in dealing with practically large-scale problems. To address this problem, the proposed multiphysics simulation is devised for analyzing large-scale problems with a significantly improved computational efficiency through utilizing a domain decomposition scheme called the finite element tearing and interconnecting, parallel computing, and the localized nature of thermal stresses in the interconnect structures. Both the capability and efficiency of the multiphysics simulation are demonstrated through analyzing large-scale interconnect structures including arrays of solder bumps and bonding wires. Detailed temperature distributions and localized stresses of large amplitude are obtained through the proposed simulation in a highly efficient manner.</description><subject>Bonding wire</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>domain decomposition</subject><subject>Efficiency</subject><subject>Finite element method</subject><subject>finite element method (FEM)</subject><subject>Integrated circuit interconnections</subject><subject>Interconnections</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>multiphysics modeling</subject><subject>parallel computing</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Simulation</subject><subject>solder bump</subject><subject>Strain</subject><subject>Stress</subject><subject>Thermal analysis</subject><subject>Thermal simulation</subject><subject>Thermal stress</subject><subject>thermoelasticity</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9UE1PAjEQbYwmEuUP6KWJ58V-bHe3R4KoJBCNrOemlKmULFtsdw_8e4sQ5jBvMnlvPh5CD5SMKCXyuZ58LuoRI7QYsYJLLuQVGjAqiozLSlxfakFu0TDGLUkhKlISPkDtxPf7BtZ42oDpgjO6yeoNhF3CBZiNbo8tvHS7vtGd8y22PuBuA_gLGqdXrnHdAY9b3Ryii9hbPNfhB7JlUgHm2QuetR0E49s2zY_36MbqJsLwjHfo-3VaT96z-cfbbDKeZ4ZJ0WWWsUJXFZcpUamFtTkYQWlJWF4RKIlZcVutrJai1EUuWZ5eNJZZkq-ZKSp-h55Oc_fB__YQO7X1fUhXRsVomadgZZ5Y7MQywccYwKp9cDsdDooSdbRW_Vurjtaqs7VJ9HgSOQC4CMqKEZIW_wGvN3TY</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Lu, Tianjian</creator><creator>Jin, Jian-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5637-1391</orcidid></search><sort><creationdate>20170201</creationdate><title>Coupled Electrical-Thermal-Mechanical Simulation for the Reliability Analysis of Large-Scale 3-D Interconnects</title><author>Lu, Tianjian ; Jin, Jian-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bonding wire</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>domain decomposition</topic><topic>Efficiency</topic><topic>Finite element method</topic><topic>finite element method (FEM)</topic><topic>Integrated circuit interconnections</topic><topic>Interconnections</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>multiphysics modeling</topic><topic>parallel computing</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Simulation</topic><topic>solder bump</topic><topic>Strain</topic><topic>Stress</topic><topic>Thermal analysis</topic><topic>Thermal simulation</topic><topic>Thermal stress</topic><topic>thermoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Tianjian</creatorcontrib><creatorcontrib>Jin, Jian-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Tianjian</au><au>Jin, Jian-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Electrical-Thermal-Mechanical Simulation for the Reliability Analysis of Large-Scale 3-D Interconnects</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>7</volume><issue>2</issue><spage>229</spage><epage>237</epage><pages>229-237</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>A multiphysics simulation technique based on the finite element method is developed for the reliability analysis of interconnects. The multiphysics simulation characterizes multidisciplinary, including electrical, thermal, and mechanical, aspects of interconnects. It is well known that the major bottleneck preventing 3-D simulations from gaining further popularity is the computational efficiency in dealing with practically large-scale problems. To address this problem, the proposed multiphysics simulation is devised for analyzing large-scale problems with a significantly improved computational efficiency through utilizing a domain decomposition scheme called the finite element tearing and interconnecting, parallel computing, and the localized nature of thermal stresses in the interconnect structures. Both the capability and efficiency of the multiphysics simulation are demonstrated through analyzing large-scale interconnect structures including arrays of solder bumps and bonding wires. Detailed temperature distributions and localized stresses of large amplitude are obtained through the proposed simulation in a highly efficient manner.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2016.2639359</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5637-1391</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2017-02, Vol.7 (2), p.229-237 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_proquest_journals_2174444274 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Bonding wire Computational efficiency Computational modeling Computer simulation Computing time domain decomposition Efficiency Finite element method finite element method (FEM) Integrated circuit interconnections Interconnections Mathematical analysis Mathematical model multiphysics modeling parallel computing Reliability Reliability analysis Simulation solder bump Strain Stress Thermal analysis Thermal simulation Thermal stress thermoelasticity |
title | Coupled Electrical-Thermal-Mechanical Simulation for the Reliability Analysis of Large-Scale 3-D Interconnects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Electrical-Thermal-Mechanical%20Simulation%20for%20the%20Reliability%20Analysis%20of%20Large-Scale%203-D%20Interconnects&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Lu,%20Tianjian&rft.date=2017-02-01&rft.volume=7&rft.issue=2&rft.spage=229&rft.epage=237&rft.pages=229-237&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2016.2639359&rft_dat=%3Cproquest_ieee_%3E2174444274%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-f226a8839a8819a5ff4ec511702480e70cb3f8bfa957a64924215cf2f04d2c683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174444274&rft_id=info:pmid/&rft_ieee_id=7820068&rfr_iscdi=true |