Loading…
Newton-Raphson Solver for Finite Element Methods Featuring Nonlinear Hysteresis Models
It is well known that the Newton-Raphson method is the most popular iterative method for nonlinear finite element problems. The method has a quadratic convergence. Under certain conditions on the Jacobian of the functional and the initial guess the Newton-Raphson method can converge very fast. Howev...
Saved in:
Published in: | IEEE transactions on magnetics 2018-01, Vol.54 (1), p.1-8 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 54 |
creator | Chama, Abdoulkadri Gerber, Stiaan Rong-Jie Wang |
description | It is well known that the Newton-Raphson method is the most popular iterative method for nonlinear finite element problems. The method has a quadratic convergence. Under certain conditions on the Jacobian of the functional and the initial guess the Newton-Raphson method can converge very fast. However, standard evaluation of such Jacobian may not be possible for the solution of nonlinear hysteresis field problems. This is due to the nature of the magnetization curves that may not be differentiable or possess a very steep gradient. In this paper, an alternative finite element implementation using the Newton-Raphson method for hysteresis field problems is described in detail. To improve the convergence of the method, a method for evaluation of the initial guess is also proposed. It is shown that the Newton method can be reliably used for solving hysteresis field problems. |
doi_str_mv | 10.1109/TMAG.2017.2761319 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2174474920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8088356</ieee_id><sourcerecordid>2174474920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zr6bN5Rj7ELYJOrwtaXPqOrpkJpmyf2_LhnDg5cDzngMPQo-UjCgl6mWzGs9HjNBsxDJJOVVXaECVoAkhUl2jASE0T5SQ4hbdhbDrVpFSMkCfa_iNzibv-rANzuIP1_6Ax7XzeNbYJgKetrAHG_EK4taZgGeg49E39guvnW0bC9rjxSlE8BCagFfOQBvu0U2t2wAPlxyizWy6mSyS5dv8dTJeJhVTPCZpJYlR1AjJTcmNlFJDWWoiVKZSLXMiuuG1JkToXGZGsDRjrK4My8vUED5Ez-ezB---jxBisXNHb7uPBaOZEJlQrKfomaq8C8FDXRx8s9f-VFBS9PaK3l7R2ysu9rrO07nTAMA_n5M856nkf3mkavk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174474920</pqid></control><display><type>article</type><title>Newton-Raphson Solver for Finite Element Methods Featuring Nonlinear Hysteresis Models</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chama, Abdoulkadri ; Gerber, Stiaan ; Rong-Jie Wang</creator><creatorcontrib>Chama, Abdoulkadri ; Gerber, Stiaan ; Rong-Jie Wang</creatorcontrib><description>It is well known that the Newton-Raphson method is the most popular iterative method for nonlinear finite element problems. The method has a quadratic convergence. Under certain conditions on the Jacobian of the functional and the initial guess the Newton-Raphson method can converge very fast. However, standard evaluation of such Jacobian may not be possible for the solution of nonlinear hysteresis field problems. This is due to the nature of the magnetization curves that may not be differentiable or possess a very steep gradient. In this paper, an alternative finite element implementation using the Newton-Raphson method for hysteresis field problems is described in detail. To improve the convergence of the method, a method for evaluation of the initial guess is also proposed. It is shown that the Newton method can be reliably used for solving hysteresis field problems.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2017.2761319</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Comparative analysis ; Convergence ; Finite element ; Finite element analysis ; Finite element method ; Hysteresis ; hysteresis curve ; Iterative methods ; Jacobian matrices ; Magnetic hysteresis ; Magnetism ; Magnetization ; Magnetization curves ; Mathematical analysis ; Mathematical model ; Newton method ; Newton methods ; Newton-Raphson method ; Nonlinear programming ; Permeability ; weak derivatives</subject><ispartof>IEEE transactions on magnetics, 2018-01, Vol.54 (1), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03</citedby><cites>FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03</cites><orcidid>0000-0001-5572-5250 ; 0000-0001-6582-9563 ; 0000-0001-5057-5185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8088356$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chama, Abdoulkadri</creatorcontrib><creatorcontrib>Gerber, Stiaan</creatorcontrib><creatorcontrib>Rong-Jie Wang</creatorcontrib><title>Newton-Raphson Solver for Finite Element Methods Featuring Nonlinear Hysteresis Models</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>It is well known that the Newton-Raphson method is the most popular iterative method for nonlinear finite element problems. The method has a quadratic convergence. Under certain conditions on the Jacobian of the functional and the initial guess the Newton-Raphson method can converge very fast. However, standard evaluation of such Jacobian may not be possible for the solution of nonlinear hysteresis field problems. This is due to the nature of the magnetization curves that may not be differentiable or possess a very steep gradient. In this paper, an alternative finite element implementation using the Newton-Raphson method for hysteresis field problems is described in detail. To improve the convergence of the method, a method for evaluation of the initial guess is also proposed. It is shown that the Newton method can be reliably used for solving hysteresis field problems.</description><subject>Comparative analysis</subject><subject>Convergence</subject><subject>Finite element</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Hysteresis</subject><subject>hysteresis curve</subject><subject>Iterative methods</subject><subject>Jacobian matrices</subject><subject>Magnetic hysteresis</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetization curves</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Newton method</subject><subject>Newton methods</subject><subject>Newton-Raphson method</subject><subject>Nonlinear programming</subject><subject>Permeability</subject><subject>weak derivatives</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zr6bN5Rj7ELYJOrwtaXPqOrpkJpmyf2_LhnDg5cDzngMPQo-UjCgl6mWzGs9HjNBsxDJJOVVXaECVoAkhUl2jASE0T5SQ4hbdhbDrVpFSMkCfa_iNzibv-rANzuIP1_6Ax7XzeNbYJgKetrAHG_EK4taZgGeg49E39guvnW0bC9rjxSlE8BCagFfOQBvu0U2t2wAPlxyizWy6mSyS5dv8dTJeJhVTPCZpJYlR1AjJTcmNlFJDWWoiVKZSLXMiuuG1JkToXGZGsDRjrK4My8vUED5Ez-ezB---jxBisXNHb7uPBaOZEJlQrKfomaq8C8FDXRx8s9f-VFBS9PaK3l7R2ysu9rrO07nTAMA_n5M856nkf3mkavk</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Chama, Abdoulkadri</creator><creator>Gerber, Stiaan</creator><creator>Rong-Jie Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5572-5250</orcidid><orcidid>https://orcid.org/0000-0001-6582-9563</orcidid><orcidid>https://orcid.org/0000-0001-5057-5185</orcidid></search><sort><creationdate>201801</creationdate><title>Newton-Raphson Solver for Finite Element Methods Featuring Nonlinear Hysteresis Models</title><author>Chama, Abdoulkadri ; Gerber, Stiaan ; Rong-Jie Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Comparative analysis</topic><topic>Convergence</topic><topic>Finite element</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Hysteresis</topic><topic>hysteresis curve</topic><topic>Iterative methods</topic><topic>Jacobian matrices</topic><topic>Magnetic hysteresis</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetization curves</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Newton method</topic><topic>Newton methods</topic><topic>Newton-Raphson method</topic><topic>Nonlinear programming</topic><topic>Permeability</topic><topic>weak derivatives</topic><toplevel>online_resources</toplevel><creatorcontrib>Chama, Abdoulkadri</creatorcontrib><creatorcontrib>Gerber, Stiaan</creatorcontrib><creatorcontrib>Rong-Jie Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chama, Abdoulkadri</au><au>Gerber, Stiaan</au><au>Rong-Jie Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Newton-Raphson Solver for Finite Element Methods Featuring Nonlinear Hysteresis Models</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2018-01</date><risdate>2018</risdate><volume>54</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>It is well known that the Newton-Raphson method is the most popular iterative method for nonlinear finite element problems. The method has a quadratic convergence. Under certain conditions on the Jacobian of the functional and the initial guess the Newton-Raphson method can converge very fast. However, standard evaluation of such Jacobian may not be possible for the solution of nonlinear hysteresis field problems. This is due to the nature of the magnetization curves that may not be differentiable or possess a very steep gradient. In this paper, an alternative finite element implementation using the Newton-Raphson method for hysteresis field problems is described in detail. To improve the convergence of the method, a method for evaluation of the initial guess is also proposed. It is shown that the Newton method can be reliably used for solving hysteresis field problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2017.2761319</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5572-5250</orcidid><orcidid>https://orcid.org/0000-0001-6582-9563</orcidid><orcidid>https://orcid.org/0000-0001-5057-5185</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2018-01, Vol.54 (1), p.1-8 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_journals_2174474920 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Comparative analysis Convergence Finite element Finite element analysis Finite element method Hysteresis hysteresis curve Iterative methods Jacobian matrices Magnetic hysteresis Magnetism Magnetization Magnetization curves Mathematical analysis Mathematical model Newton method Newton methods Newton-Raphson method Nonlinear programming Permeability weak derivatives |
title | Newton-Raphson Solver for Finite Element Methods Featuring Nonlinear Hysteresis Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Newton-Raphson%20Solver%20for%20Finite%20Element%20Methods%20Featuring%20Nonlinear%20Hysteresis%20Models&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Chama,%20Abdoulkadri&rft.date=2018-01&rft.volume=54&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2017.2761319&rft_dat=%3Cproquest_ieee_%3E2174474920%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174474920&rft_id=info:pmid/&rft_ieee_id=8088356&rfr_iscdi=true |