Loading…

Newton-Raphson Solver for Finite Element Methods Featuring Nonlinear Hysteresis Models

It is well known that the Newton-Raphson method is the most popular iterative method for nonlinear finite element problems. The method has a quadratic convergence. Under certain conditions on the Jacobian of the functional and the initial guess the Newton-Raphson method can converge very fast. Howev...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2018-01, Vol.54 (1), p.1-8
Main Authors: Chama, Abdoulkadri, Gerber, Stiaan, Rong-Jie Wang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03
cites cdi_FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03
container_end_page 8
container_issue 1
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 54
creator Chama, Abdoulkadri
Gerber, Stiaan
Rong-Jie Wang
description It is well known that the Newton-Raphson method is the most popular iterative method for nonlinear finite element problems. The method has a quadratic convergence. Under certain conditions on the Jacobian of the functional and the initial guess the Newton-Raphson method can converge very fast. However, standard evaluation of such Jacobian may not be possible for the solution of nonlinear hysteresis field problems. This is due to the nature of the magnetization curves that may not be differentiable or possess a very steep gradient. In this paper, an alternative finite element implementation using the Newton-Raphson method for hysteresis field problems is described in detail. To improve the convergence of the method, a method for evaluation of the initial guess is also proposed. It is shown that the Newton method can be reliably used for solving hysteresis field problems.
doi_str_mv 10.1109/TMAG.2017.2761319
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2174474920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8088356</ieee_id><sourcerecordid>2174474920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zr6bN5Rj7ELYJOrwtaXPqOrpkJpmyf2_LhnDg5cDzngMPQo-UjCgl6mWzGs9HjNBsxDJJOVVXaECVoAkhUl2jASE0T5SQ4hbdhbDrVpFSMkCfa_iNzibv-rANzuIP1_6Ax7XzeNbYJgKetrAHG_EK4taZgGeg49E39guvnW0bC9rjxSlE8BCagFfOQBvu0U2t2wAPlxyizWy6mSyS5dv8dTJeJhVTPCZpJYlR1AjJTcmNlFJDWWoiVKZSLXMiuuG1JkToXGZGsDRjrK4My8vUED5Ez-ezB---jxBisXNHb7uPBaOZEJlQrKfomaq8C8FDXRx8s9f-VFBS9PaK3l7R2ysu9rrO07nTAMA_n5M856nkf3mkavk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174474920</pqid></control><display><type>article</type><title>Newton-Raphson Solver for Finite Element Methods Featuring Nonlinear Hysteresis Models</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chama, Abdoulkadri ; Gerber, Stiaan ; Rong-Jie Wang</creator><creatorcontrib>Chama, Abdoulkadri ; Gerber, Stiaan ; Rong-Jie Wang</creatorcontrib><description>It is well known that the Newton-Raphson method is the most popular iterative method for nonlinear finite element problems. The method has a quadratic convergence. Under certain conditions on the Jacobian of the functional and the initial guess the Newton-Raphson method can converge very fast. However, standard evaluation of such Jacobian may not be possible for the solution of nonlinear hysteresis field problems. This is due to the nature of the magnetization curves that may not be differentiable or possess a very steep gradient. In this paper, an alternative finite element implementation using the Newton-Raphson method for hysteresis field problems is described in detail. To improve the convergence of the method, a method for evaluation of the initial guess is also proposed. It is shown that the Newton method can be reliably used for solving hysteresis field problems.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2017.2761319</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Comparative analysis ; Convergence ; Finite element ; Finite element analysis ; Finite element method ; Hysteresis ; hysteresis curve ; Iterative methods ; Jacobian matrices ; Magnetic hysteresis ; Magnetism ; Magnetization ; Magnetization curves ; Mathematical analysis ; Mathematical model ; Newton method ; Newton methods ; Newton-Raphson method ; Nonlinear programming ; Permeability ; weak derivatives</subject><ispartof>IEEE transactions on magnetics, 2018-01, Vol.54 (1), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03</citedby><cites>FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03</cites><orcidid>0000-0001-5572-5250 ; 0000-0001-6582-9563 ; 0000-0001-5057-5185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8088356$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chama, Abdoulkadri</creatorcontrib><creatorcontrib>Gerber, Stiaan</creatorcontrib><creatorcontrib>Rong-Jie Wang</creatorcontrib><title>Newton-Raphson Solver for Finite Element Methods Featuring Nonlinear Hysteresis Models</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>It is well known that the Newton-Raphson method is the most popular iterative method for nonlinear finite element problems. The method has a quadratic convergence. Under certain conditions on the Jacobian of the functional and the initial guess the Newton-Raphson method can converge very fast. However, standard evaluation of such Jacobian may not be possible for the solution of nonlinear hysteresis field problems. This is due to the nature of the magnetization curves that may not be differentiable or possess a very steep gradient. In this paper, an alternative finite element implementation using the Newton-Raphson method for hysteresis field problems is described in detail. To improve the convergence of the method, a method for evaluation of the initial guess is also proposed. It is shown that the Newton method can be reliably used for solving hysteresis field problems.</description><subject>Comparative analysis</subject><subject>Convergence</subject><subject>Finite element</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Hysteresis</subject><subject>hysteresis curve</subject><subject>Iterative methods</subject><subject>Jacobian matrices</subject><subject>Magnetic hysteresis</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetization curves</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Newton method</subject><subject>Newton methods</subject><subject>Newton-Raphson method</subject><subject>Nonlinear programming</subject><subject>Permeability</subject><subject>weak derivatives</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zr6bN5Rj7ELYJOrwtaXPqOrpkJpmyf2_LhnDg5cDzngMPQo-UjCgl6mWzGs9HjNBsxDJJOVVXaECVoAkhUl2jASE0T5SQ4hbdhbDrVpFSMkCfa_iNzibv-rANzuIP1_6Ax7XzeNbYJgKetrAHG_EK4taZgGeg49E39guvnW0bC9rjxSlE8BCagFfOQBvu0U2t2wAPlxyizWy6mSyS5dv8dTJeJhVTPCZpJYlR1AjJTcmNlFJDWWoiVKZSLXMiuuG1JkToXGZGsDRjrK4My8vUED5Ez-ezB---jxBisXNHb7uPBaOZEJlQrKfomaq8C8FDXRx8s9f-VFBS9PaK3l7R2ysu9rrO07nTAMA_n5M856nkf3mkavk</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Chama, Abdoulkadri</creator><creator>Gerber, Stiaan</creator><creator>Rong-Jie Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5572-5250</orcidid><orcidid>https://orcid.org/0000-0001-6582-9563</orcidid><orcidid>https://orcid.org/0000-0001-5057-5185</orcidid></search><sort><creationdate>201801</creationdate><title>Newton-Raphson Solver for Finite Element Methods Featuring Nonlinear Hysteresis Models</title><author>Chama, Abdoulkadri ; Gerber, Stiaan ; Rong-Jie Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Comparative analysis</topic><topic>Convergence</topic><topic>Finite element</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Hysteresis</topic><topic>hysteresis curve</topic><topic>Iterative methods</topic><topic>Jacobian matrices</topic><topic>Magnetic hysteresis</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetization curves</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Newton method</topic><topic>Newton methods</topic><topic>Newton-Raphson method</topic><topic>Nonlinear programming</topic><topic>Permeability</topic><topic>weak derivatives</topic><toplevel>online_resources</toplevel><creatorcontrib>Chama, Abdoulkadri</creatorcontrib><creatorcontrib>Gerber, Stiaan</creatorcontrib><creatorcontrib>Rong-Jie Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chama, Abdoulkadri</au><au>Gerber, Stiaan</au><au>Rong-Jie Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Newton-Raphson Solver for Finite Element Methods Featuring Nonlinear Hysteresis Models</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2018-01</date><risdate>2018</risdate><volume>54</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>It is well known that the Newton-Raphson method is the most popular iterative method for nonlinear finite element problems. The method has a quadratic convergence. Under certain conditions on the Jacobian of the functional and the initial guess the Newton-Raphson method can converge very fast. However, standard evaluation of such Jacobian may not be possible for the solution of nonlinear hysteresis field problems. This is due to the nature of the magnetization curves that may not be differentiable or possess a very steep gradient. In this paper, an alternative finite element implementation using the Newton-Raphson method for hysteresis field problems is described in detail. To improve the convergence of the method, a method for evaluation of the initial guess is also proposed. It is shown that the Newton method can be reliably used for solving hysteresis field problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2017.2761319</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5572-5250</orcidid><orcidid>https://orcid.org/0000-0001-6582-9563</orcidid><orcidid>https://orcid.org/0000-0001-5057-5185</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2018-01, Vol.54 (1), p.1-8
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2174474920
source IEEE Electronic Library (IEL) Journals
subjects Comparative analysis
Convergence
Finite element
Finite element analysis
Finite element method
Hysteresis
hysteresis curve
Iterative methods
Jacobian matrices
Magnetic hysteresis
Magnetism
Magnetization
Magnetization curves
Mathematical analysis
Mathematical model
Newton method
Newton methods
Newton-Raphson method
Nonlinear programming
Permeability
weak derivatives
title Newton-Raphson Solver for Finite Element Methods Featuring Nonlinear Hysteresis Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Newton-Raphson%20Solver%20for%20Finite%20Element%20Methods%20Featuring%20Nonlinear%20Hysteresis%20Models&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Chama,%20Abdoulkadri&rft.date=2018-01&rft.volume=54&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2017.2761319&rft_dat=%3Cproquest_ieee_%3E2174474920%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-5c60d91d463db3d666aebba049795a68048043fa004a867d425722fcd28b5d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174474920&rft_id=info:pmid/&rft_ieee_id=8088356&rfr_iscdi=true