Loading…
Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies
We analyze the asymptotics of the normalized remaining uncertainty of a source when a compressed or hashed version of it and correlated side information is observed. For this system, commonly known as Slepian-Wolf source coding, we establish the optimal (minimum) rate of compression of the source to...
Saved in:
Published in: | IEEE transactions on information theory 2018-05, Vol.64 (5), p.3734-3755 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3 |
container_end_page | 3755 |
container_issue | 5 |
container_start_page | 3734 |
container_title | IEEE transactions on information theory |
container_volume | 64 |
creator | Tan, Vincent Y. F. Hayashi, Masahito |
description | We analyze the asymptotics of the normalized remaining uncertainty of a source when a compressed or hashed version of it and correlated side information is observed. For this system, commonly known as Slepian-Wolf source coding, we establish the optimal (minimum) rate of compression of the source to ensure that the remaining uncertainties vanish. We also study the exponential rate of decay of the remaining uncertainty to zero when the rate is above the optimal rate of compression. In this paper, we consider various classes of random universal hash functions. Instead of measuring remaining uncertainties using traditional Shannon information measures, we do so using two forms of the conditional Rényi entropy. Among other techniques, we employ new one-shot bounds and the moments of type class enumerator method (see Merhav) for these evaluations. We show that these asymptotic results are generalizations of the strong converse exponent and the error exponent of the Slepian-Wolf problem under maximum a posteriori decoding. |
doi_str_mv | 10.1109/TIT.2018.2792495 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174479921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8255628</ieee_id><sourcerecordid>2174479921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWKt3wUvA89a8bLKbHEupWigIpfUkhOwmKyltUpMt2J_k7_CPmdLi6TG8mWH4ELoHMgIg8mk5W44oATGitaRM8gs0AM7rQlacXaIBya9CMiau0U1K6ywZBzpAH2OvN4fkEg4dXtitdt75T7zyrY19Fr2zCWtv8PR7F7z1fco_YyN-19GFfcKT4I3rXcg1ePH74w8OT30fwy4Hb9FVpzfJ3p3vEK2ep8vJazF_e5lNxvOiLXndF6VuDAVDRNkYBqYC21adlR2pCGuMELwEWouKCmGYJqSRDFpJ27rmUFrQphyix1PvLoavvU29Wod9zIuSolAzVktJIbvIydXGkFK0ndpFt9XxoICoI0OVGaojQ3VmmCMPp4iz1v7bBeU8ryn_AFFhbj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174479921</pqid></control><display><type>article</type><title>Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies</title><source>IEEE Xplore (Online service)</source><creator>Tan, Vincent Y. F. ; Hayashi, Masahito</creator><creatorcontrib>Tan, Vincent Y. F. ; Hayashi, Masahito</creatorcontrib><description>We analyze the asymptotics of the normalized remaining uncertainty of a source when a compressed or hashed version of it and correlated side information is observed. For this system, commonly known as Slepian-Wolf source coding, we establish the optimal (minimum) rate of compression of the source to ensure that the remaining uncertainties vanish. We also study the exponential rate of decay of the remaining uncertainty to zero when the rate is above the optimal rate of compression. In this paper, we consider various classes of random universal hash functions. Instead of measuring remaining uncertainties using traditional Shannon information measures, we do so using two forms of the conditional Rényi entropy. Among other techniques, we employ new one-shot bounds and the moments of type class enumerator method (see Merhav) for these evaluations. We show that these asymptotic results are generalizations of the strong converse exponent and the error exponent of the Slepian-Wolf problem under maximum a posteriori decoding.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2792495</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic methods ; Asymptotic properties ; Channel coding ; Codes ; conditional Rényi entropies ; Decay rate ; Decoding ; Entropy ; error exponent ; information-theoretic security ; Measurement uncertainty ; moments of type class enumerator method ; Remaining uncertainty ; Rényi divergence ; Slepian-Wolf coding ; Source coding ; strong converse exponent ; Uncertainty ; Uncertainty analysis ; universal hash functions</subject><ispartof>IEEE transactions on information theory, 2018-05, Vol.64 (5), p.3734-3755</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3</citedby><cites>FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3</cites><orcidid>0000-0003-3104-1000 ; 0000-0002-5008-4527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8255628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tan, Vincent Y. F.</creatorcontrib><creatorcontrib>Hayashi, Masahito</creatorcontrib><title>Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We analyze the asymptotics of the normalized remaining uncertainty of a source when a compressed or hashed version of it and correlated side information is observed. For this system, commonly known as Slepian-Wolf source coding, we establish the optimal (minimum) rate of compression of the source to ensure that the remaining uncertainties vanish. We also study the exponential rate of decay of the remaining uncertainty to zero when the rate is above the optimal rate of compression. In this paper, we consider various classes of random universal hash functions. Instead of measuring remaining uncertainties using traditional Shannon information measures, we do so using two forms of the conditional Rényi entropy. Among other techniques, we employ new one-shot bounds and the moments of type class enumerator method (see Merhav) for these evaluations. We show that these asymptotic results are generalizations of the strong converse exponent and the error exponent of the Slepian-Wolf problem under maximum a posteriori decoding.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Channel coding</subject><subject>Codes</subject><subject>conditional Rényi entropies</subject><subject>Decay rate</subject><subject>Decoding</subject><subject>Entropy</subject><subject>error exponent</subject><subject>information-theoretic security</subject><subject>Measurement uncertainty</subject><subject>moments of type class enumerator method</subject><subject>Remaining uncertainty</subject><subject>Rényi divergence</subject><subject>Slepian-Wolf coding</subject><subject>Source coding</subject><subject>strong converse exponent</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>universal hash functions</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEUhIMoWKt3wUvA89a8bLKbHEupWigIpfUkhOwmKyltUpMt2J_k7_CPmdLi6TG8mWH4ELoHMgIg8mk5W44oATGitaRM8gs0AM7rQlacXaIBya9CMiau0U1K6ywZBzpAH2OvN4fkEg4dXtitdt75T7zyrY19Fr2zCWtv8PR7F7z1fco_YyN-19GFfcKT4I3rXcg1ePH74w8OT30fwy4Hb9FVpzfJ3p3vEK2ep8vJazF_e5lNxvOiLXndF6VuDAVDRNkYBqYC21adlR2pCGuMELwEWouKCmGYJqSRDFpJ27rmUFrQphyix1PvLoavvU29Wod9zIuSolAzVktJIbvIydXGkFK0ndpFt9XxoICoI0OVGaojQ3VmmCMPp4iz1v7bBeU8ryn_AFFhbj0</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Tan, Vincent Y. F.</creator><creator>Hayashi, Masahito</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3104-1000</orcidid><orcidid>https://orcid.org/0000-0002-5008-4527</orcidid></search><sort><creationdate>20180501</creationdate><title>Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies</title><author>Tan, Vincent Y. F. ; Hayashi, Masahito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Channel coding</topic><topic>Codes</topic><topic>conditional Rényi entropies</topic><topic>Decay rate</topic><topic>Decoding</topic><topic>Entropy</topic><topic>error exponent</topic><topic>information-theoretic security</topic><topic>Measurement uncertainty</topic><topic>moments of type class enumerator method</topic><topic>Remaining uncertainty</topic><topic>Rényi divergence</topic><topic>Slepian-Wolf coding</topic><topic>Source coding</topic><topic>strong converse exponent</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>universal hash functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Vincent Y. F.</creatorcontrib><creatorcontrib>Hayashi, Masahito</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Vincent Y. F.</au><au>Hayashi, Masahito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>64</volume><issue>5</issue><spage>3734</spage><epage>3755</epage><pages>3734-3755</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We analyze the asymptotics of the normalized remaining uncertainty of a source when a compressed or hashed version of it and correlated side information is observed. For this system, commonly known as Slepian-Wolf source coding, we establish the optimal (minimum) rate of compression of the source to ensure that the remaining uncertainties vanish. We also study the exponential rate of decay of the remaining uncertainty to zero when the rate is above the optimal rate of compression. In this paper, we consider various classes of random universal hash functions. Instead of measuring remaining uncertainties using traditional Shannon information measures, we do so using two forms of the conditional Rényi entropy. Among other techniques, we employ new one-shot bounds and the moments of type class enumerator method (see Merhav) for these evaluations. We show that these asymptotic results are generalizations of the strong converse exponent and the error exponent of the Slepian-Wolf problem under maximum a posteriori decoding.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2792495</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3104-1000</orcidid><orcidid>https://orcid.org/0000-0002-5008-4527</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2018-05, Vol.64 (5), p.3734-3755 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_2174479921 |
source | IEEE Xplore (Online service) |
subjects | Asymptotic methods Asymptotic properties Channel coding Codes conditional Rényi entropies Decay rate Decoding Entropy error exponent information-theoretic security Measurement uncertainty moments of type class enumerator method Remaining uncertainty Rényi divergence Slepian-Wolf coding Source coding strong converse exponent Uncertainty Uncertainty analysis universal hash functions |
title | Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Remaining%20Uncertainties%20and%20Exponents%20Under%20Various%20Conditional%20R%C3%A9nyi%20Entropies&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Tan,%20Vincent%20Y.%20F.&rft.date=2018-05-01&rft.volume=64&rft.issue=5&rft.spage=3734&rft.epage=3755&rft.pages=3734-3755&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2792495&rft_dat=%3Cproquest_cross%3E2174479921%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174479921&rft_id=info:pmid/&rft_ieee_id=8255628&rfr_iscdi=true |