Loading…

Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies

We analyze the asymptotics of the normalized remaining uncertainty of a source when a compressed or hashed version of it and correlated side information is observed. For this system, commonly known as Slepian-Wolf source coding, we establish the optimal (minimum) rate of compression of the source to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2018-05, Vol.64 (5), p.3734-3755
Main Authors: Tan, Vincent Y. F., Hayashi, Masahito
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3
cites cdi_FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3
container_end_page 3755
container_issue 5
container_start_page 3734
container_title IEEE transactions on information theory
container_volume 64
creator Tan, Vincent Y. F.
Hayashi, Masahito
description We analyze the asymptotics of the normalized remaining uncertainty of a source when a compressed or hashed version of it and correlated side information is observed. For this system, commonly known as Slepian-Wolf source coding, we establish the optimal (minimum) rate of compression of the source to ensure that the remaining uncertainties vanish. We also study the exponential rate of decay of the remaining uncertainty to zero when the rate is above the optimal rate of compression. In this paper, we consider various classes of random universal hash functions. Instead of measuring remaining uncertainties using traditional Shannon information measures, we do so using two forms of the conditional Rényi entropy. Among other techniques, we employ new one-shot bounds and the moments of type class enumerator method (see Merhav) for these evaluations. We show that these asymptotic results are generalizations of the strong converse exponent and the error exponent of the Slepian-Wolf problem under maximum a posteriori decoding.
doi_str_mv 10.1109/TIT.2018.2792495
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174479921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8255628</ieee_id><sourcerecordid>2174479921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWKt3wUvA89a8bLKbHEupWigIpfUkhOwmKyltUpMt2J_k7_CPmdLi6TG8mWH4ELoHMgIg8mk5W44oATGitaRM8gs0AM7rQlacXaIBya9CMiau0U1K6ywZBzpAH2OvN4fkEg4dXtitdt75T7zyrY19Fr2zCWtv8PR7F7z1fco_YyN-19GFfcKT4I3rXcg1ePH74w8OT30fwy4Hb9FVpzfJ3p3vEK2ep8vJazF_e5lNxvOiLXndF6VuDAVDRNkYBqYC21adlR2pCGuMELwEWouKCmGYJqSRDFpJ27rmUFrQphyix1PvLoavvU29Wod9zIuSolAzVktJIbvIydXGkFK0ndpFt9XxoICoI0OVGaojQ3VmmCMPp4iz1v7bBeU8ryn_AFFhbj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174479921</pqid></control><display><type>article</type><title>Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies</title><source>IEEE Xplore (Online service)</source><creator>Tan, Vincent Y. F. ; Hayashi, Masahito</creator><creatorcontrib>Tan, Vincent Y. F. ; Hayashi, Masahito</creatorcontrib><description>We analyze the asymptotics of the normalized remaining uncertainty of a source when a compressed or hashed version of it and correlated side information is observed. For this system, commonly known as Slepian-Wolf source coding, we establish the optimal (minimum) rate of compression of the source to ensure that the remaining uncertainties vanish. We also study the exponential rate of decay of the remaining uncertainty to zero when the rate is above the optimal rate of compression. In this paper, we consider various classes of random universal hash functions. Instead of measuring remaining uncertainties using traditional Shannon information measures, we do so using two forms of the conditional Rényi entropy. Among other techniques, we employ new one-shot bounds and the moments of type class enumerator method (see Merhav) for these evaluations. We show that these asymptotic results are generalizations of the strong converse exponent and the error exponent of the Slepian-Wolf problem under maximum a posteriori decoding.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2792495</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic methods ; Asymptotic properties ; Channel coding ; Codes ; conditional Rényi entropies ; Decay rate ; Decoding ; Entropy ; error exponent ; information-theoretic security ; Measurement uncertainty ; moments of type class enumerator method ; Remaining uncertainty ; Rényi divergence ; Slepian-Wolf coding ; Source coding ; strong converse exponent ; Uncertainty ; Uncertainty analysis ; universal hash functions</subject><ispartof>IEEE transactions on information theory, 2018-05, Vol.64 (5), p.3734-3755</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3</citedby><cites>FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3</cites><orcidid>0000-0003-3104-1000 ; 0000-0002-5008-4527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8255628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tan, Vincent Y. F.</creatorcontrib><creatorcontrib>Hayashi, Masahito</creatorcontrib><title>Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We analyze the asymptotics of the normalized remaining uncertainty of a source when a compressed or hashed version of it and correlated side information is observed. For this system, commonly known as Slepian-Wolf source coding, we establish the optimal (minimum) rate of compression of the source to ensure that the remaining uncertainties vanish. We also study the exponential rate of decay of the remaining uncertainty to zero when the rate is above the optimal rate of compression. In this paper, we consider various classes of random universal hash functions. Instead of measuring remaining uncertainties using traditional Shannon information measures, we do so using two forms of the conditional Rényi entropy. Among other techniques, we employ new one-shot bounds and the moments of type class enumerator method (see Merhav) for these evaluations. We show that these asymptotic results are generalizations of the strong converse exponent and the error exponent of the Slepian-Wolf problem under maximum a posteriori decoding.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Channel coding</subject><subject>Codes</subject><subject>conditional Rényi entropies</subject><subject>Decay rate</subject><subject>Decoding</subject><subject>Entropy</subject><subject>error exponent</subject><subject>information-theoretic security</subject><subject>Measurement uncertainty</subject><subject>moments of type class enumerator method</subject><subject>Remaining uncertainty</subject><subject>Rényi divergence</subject><subject>Slepian-Wolf coding</subject><subject>Source coding</subject><subject>strong converse exponent</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>universal hash functions</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEUhIMoWKt3wUvA89a8bLKbHEupWigIpfUkhOwmKyltUpMt2J_k7_CPmdLi6TG8mWH4ELoHMgIg8mk5W44oATGitaRM8gs0AM7rQlacXaIBya9CMiau0U1K6ywZBzpAH2OvN4fkEg4dXtitdt75T7zyrY19Fr2zCWtv8PR7F7z1fco_YyN-19GFfcKT4I3rXcg1ePH74w8OT30fwy4Hb9FVpzfJ3p3vEK2ep8vJazF_e5lNxvOiLXndF6VuDAVDRNkYBqYC21adlR2pCGuMELwEWouKCmGYJqSRDFpJ27rmUFrQphyix1PvLoavvU29Wod9zIuSolAzVktJIbvIydXGkFK0ndpFt9XxoICoI0OVGaojQ3VmmCMPp4iz1v7bBeU8ryn_AFFhbj0</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Tan, Vincent Y. F.</creator><creator>Hayashi, Masahito</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3104-1000</orcidid><orcidid>https://orcid.org/0000-0002-5008-4527</orcidid></search><sort><creationdate>20180501</creationdate><title>Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies</title><author>Tan, Vincent Y. F. ; Hayashi, Masahito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Channel coding</topic><topic>Codes</topic><topic>conditional Rényi entropies</topic><topic>Decay rate</topic><topic>Decoding</topic><topic>Entropy</topic><topic>error exponent</topic><topic>information-theoretic security</topic><topic>Measurement uncertainty</topic><topic>moments of type class enumerator method</topic><topic>Remaining uncertainty</topic><topic>Rényi divergence</topic><topic>Slepian-Wolf coding</topic><topic>Source coding</topic><topic>strong converse exponent</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>universal hash functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Vincent Y. F.</creatorcontrib><creatorcontrib>Hayashi, Masahito</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Vincent Y. F.</au><au>Hayashi, Masahito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>64</volume><issue>5</issue><spage>3734</spage><epage>3755</epage><pages>3734-3755</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We analyze the asymptotics of the normalized remaining uncertainty of a source when a compressed or hashed version of it and correlated side information is observed. For this system, commonly known as Slepian-Wolf source coding, we establish the optimal (minimum) rate of compression of the source to ensure that the remaining uncertainties vanish. We also study the exponential rate of decay of the remaining uncertainty to zero when the rate is above the optimal rate of compression. In this paper, we consider various classes of random universal hash functions. Instead of measuring remaining uncertainties using traditional Shannon information measures, we do so using two forms of the conditional Rényi entropy. Among other techniques, we employ new one-shot bounds and the moments of type class enumerator method (see Merhav) for these evaluations. We show that these asymptotic results are generalizations of the strong converse exponent and the error exponent of the Slepian-Wolf problem under maximum a posteriori decoding.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2792495</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3104-1000</orcidid><orcidid>https://orcid.org/0000-0002-5008-4527</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2018-05, Vol.64 (5), p.3734-3755
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_2174479921
source IEEE Xplore (Online service)
subjects Asymptotic methods
Asymptotic properties
Channel coding
Codes
conditional Rényi entropies
Decay rate
Decoding
Entropy
error exponent
information-theoretic security
Measurement uncertainty
moments of type class enumerator method
Remaining uncertainty
Rényi divergence
Slepian-Wolf coding
Source coding
strong converse exponent
Uncertainty
Uncertainty analysis
universal hash functions
title Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Remaining%20Uncertainties%20and%20Exponents%20Under%20Various%20Conditional%20R%C3%A9nyi%20Entropies&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Tan,%20Vincent%20Y.%20F.&rft.date=2018-05-01&rft.volume=64&rft.issue=5&rft.spage=3734&rft.epage=3755&rft.pages=3734-3755&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2792495&rft_dat=%3Cproquest_cross%3E2174479921%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-3abd21d083bd41d61ec6fe9f0604bd885312786288d4a00b941c92c77513e1ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174479921&rft_id=info:pmid/&rft_ieee_id=8255628&rfr_iscdi=true