Loading…
Linear Size Constant-Composition Codes Meeting the Johnson Bound
The Johnson-type upper bound on the maximum size of a code of length n , distance d=2w-1 , and constant composition {\overline {w}} is \lfloor \dfrac {\vphantom {R^{.}}n}{w_{1}}\rfloor , where w is the total weight and w_{1} is the largest component of {\overline {w}} . Recently, Chee et a...
Saved in:
Published in: | IEEE transactions on information theory 2018-02, Vol.64 (2), p.909-917 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-8c65d013ef80fd796e483e551a0425c19e10cf96c56e7705109c0eb5122690b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-8c65d013ef80fd796e483e551a0425c19e10cf96c56e7705109c0eb5122690b23 |
container_end_page | 917 |
container_issue | 2 |
container_start_page | 909 |
container_title | IEEE transactions on information theory |
container_volume | 64 |
creator | Chee, Yeow Meng Zhang, Xiande |
description | The Johnson-type upper bound on the maximum size of a code of length n , distance d=2w-1 , and constant composition {\overline {w}} is \lfloor \dfrac {\vphantom {R^{.}}n}{w_{1}}\rfloor , where w is the total weight and w_{1} is the largest component of {\overline {w}} . Recently, Chee et al. proved that this upper bound can be achieved for all constant-composition codes of sufficiently large lengths. Let N_{ccc}({\overline {w}}) be the smallest such length. The determination of N_{ccc}({\overline {w}}) is trivial for binary codes. This paper provides a lower bound on N_{ccc}({\overline {w}}) , which is shown to be tight for all ternary and quaternary codes by giving new combinatorial constructions. Consequently, by the refining method, we determine the values of N_{ccc}({\overline {w}}) , for all q -ary constant-composition codes, provided that 3w_{1}\geq w with finite possible exceptions. |
doi_str_mv | 10.1109/TIT.2017.2689026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174496459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7889025</ieee_id><sourcerecordid>2174496459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8c65d013ef80fd796e483e551a0425c19e10cf96c56e7705109c0eb5122690b23</originalsourceid><addsrcrecordid>eNo9kLtPwzAQxi0EEqWwI7FEYk45O35uQMSjqIiBMlupc6GuqF3idIC_HletmE5333evHyGXFCaUgrmZT-cTBlRNmNQGmDwiIyqEKo0U_JiMAKguDef6lJyltMopF5SNyO3MB2z64t3_YlHHkIYmDGUd15uY_OBjyMUWU_GKOPjwWQxLLF7iMqSs3MdtaM_JSdd8Jbw4xDH5eHyY18_l7O1pWt_NSscMHUrtpGiBVthp6FplJHJdoRC0Ac6EowYpuM5IJyQqBSK_5AAX-UYmDSxYNSbX-7mbPn5vMQ12Fbd9yCsto4pzI7kw2QV7l-tjSj12dtP7ddP_WAp2x8lmTnbHyR445ZarfYtHxH-70jtVVH8Bd2Hb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174496459</pqid></control><display><type>article</type><title>Linear Size Constant-Composition Codes Meeting the Johnson Bound</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chee, Yeow Meng ; Zhang, Xiande</creator><creatorcontrib>Chee, Yeow Meng ; Zhang, Xiande</creatorcontrib><description><![CDATA[The Johnson-type upper bound on the maximum size of a code of length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>, distance <inline-formula> <tex-math notation="LaTeX">d=2w-1 </tex-math></inline-formula>, and constant composition <inline-formula> <tex-math notation="LaTeX">{\overline {w}} </tex-math></inline-formula> is <inline-formula> <tex-math notation="LaTeX">\lfloor \dfrac {\vphantom {R^{.}}n}{w_{1}}\rfloor </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">w </tex-math></inline-formula> is the total weight and <inline-formula> <tex-math notation="LaTeX">w_{1} </tex-math></inline-formula> is the largest component of <inline-formula> <tex-math notation="LaTeX">{\overline {w}} </tex-math></inline-formula>. Recently, Chee et al. proved that this upper bound can be achieved for all constant-composition codes of sufficiently large lengths. Let <inline-formula> <tex-math notation="LaTeX">N_{ccc}({\overline {w}}) </tex-math></inline-formula> be the smallest such length. The determination of <inline-formula> <tex-math notation="LaTeX">N_{ccc}({\overline {w}}) </tex-math></inline-formula> is trivial for binary codes. This paper provides a lower bound on <inline-formula> <tex-math notation="LaTeX">N_{ccc}({\overline {w}}) </tex-math></inline-formula>, which is shown to be tight for all ternary and quaternary codes by giving new combinatorial constructions. Consequently, by the refining method, we determine the values of <inline-formula> <tex-math notation="LaTeX">N_{ccc}({\overline {w}}) </tex-math></inline-formula>, for all <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula>-ary constant-composition codes, provided that <inline-formula> <tex-math notation="LaTeX">3w_{1}\geq w </tex-math></inline-formula> with finite possible exceptions.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2017.2689026</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>balanced packings ; Binary codes ; Binary system ; Codes ; Combinatorial analysis ; Composition ; Constant-composition codes ; difference families ; Frequency modulation ; Indexes ; Johnson-type bound ; Lower bounds ; Memoryless systems ; Nickel ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2018-02, Vol.64 (2), p.909-917</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8c65d013ef80fd796e483e551a0425c19e10cf96c56e7705109c0eb5122690b23</citedby><cites>FETCH-LOGICAL-c291t-8c65d013ef80fd796e483e551a0425c19e10cf96c56e7705109c0eb5122690b23</cites><orcidid>0000-0001-7823-8068 ; 0000-0003-4234-3610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7889025$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chee, Yeow Meng</creatorcontrib><creatorcontrib>Zhang, Xiande</creatorcontrib><title>Linear Size Constant-Composition Codes Meeting the Johnson Bound</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[The Johnson-type upper bound on the maximum size of a code of length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>, distance <inline-formula> <tex-math notation="LaTeX">d=2w-1 </tex-math></inline-formula>, and constant composition <inline-formula> <tex-math notation="LaTeX">{\overline {w}} </tex-math></inline-formula> is <inline-formula> <tex-math notation="LaTeX">\lfloor \dfrac {\vphantom {R^{.}}n}{w_{1}}\rfloor </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">w </tex-math></inline-formula> is the total weight and <inline-formula> <tex-math notation="LaTeX">w_{1} </tex-math></inline-formula> is the largest component of <inline-formula> <tex-math notation="LaTeX">{\overline {w}} </tex-math></inline-formula>. Recently, Chee et al. proved that this upper bound can be achieved for all constant-composition codes of sufficiently large lengths. Let <inline-formula> <tex-math notation="LaTeX">N_{ccc}({\overline {w}}) </tex-math></inline-formula> be the smallest such length. The determination of <inline-formula> <tex-math notation="LaTeX">N_{ccc}({\overline {w}}) </tex-math></inline-formula> is trivial for binary codes. This paper provides a lower bound on <inline-formula> <tex-math notation="LaTeX">N_{ccc}({\overline {w}}) </tex-math></inline-formula>, which is shown to be tight for all ternary and quaternary codes by giving new combinatorial constructions. Consequently, by the refining method, we determine the values of <inline-formula> <tex-math notation="LaTeX">N_{ccc}({\overline {w}}) </tex-math></inline-formula>, for all <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula>-ary constant-composition codes, provided that <inline-formula> <tex-math notation="LaTeX">3w_{1}\geq w </tex-math></inline-formula> with finite possible exceptions.]]></description><subject>balanced packings</subject><subject>Binary codes</subject><subject>Binary system</subject><subject>Codes</subject><subject>Combinatorial analysis</subject><subject>Composition</subject><subject>Constant-composition codes</subject><subject>difference families</subject><subject>Frequency modulation</subject><subject>Indexes</subject><subject>Johnson-type bound</subject><subject>Lower bounds</subject><subject>Memoryless systems</subject><subject>Nickel</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kLtPwzAQxi0EEqWwI7FEYk45O35uQMSjqIiBMlupc6GuqF3idIC_HletmE5333evHyGXFCaUgrmZT-cTBlRNmNQGmDwiIyqEKo0U_JiMAKguDef6lJyltMopF5SNyO3MB2z64t3_YlHHkIYmDGUd15uY_OBjyMUWU_GKOPjwWQxLLF7iMqSs3MdtaM_JSdd8Jbw4xDH5eHyY18_l7O1pWt_NSscMHUrtpGiBVthp6FplJHJdoRC0Ac6EowYpuM5IJyQqBSK_5AAX-UYmDSxYNSbX-7mbPn5vMQ12Fbd9yCsto4pzI7kw2QV7l-tjSj12dtP7ddP_WAp2x8lmTnbHyR445ZarfYtHxH-70jtVVH8Bd2Hb</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Chee, Yeow Meng</creator><creator>Zhang, Xiande</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7823-8068</orcidid><orcidid>https://orcid.org/0000-0003-4234-3610</orcidid></search><sort><creationdate>20180201</creationdate><title>Linear Size Constant-Composition Codes Meeting the Johnson Bound</title><author>Chee, Yeow Meng ; Zhang, Xiande</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8c65d013ef80fd796e483e551a0425c19e10cf96c56e7705109c0eb5122690b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>balanced packings</topic><topic>Binary codes</topic><topic>Binary system</topic><topic>Codes</topic><topic>Combinatorial analysis</topic><topic>Composition</topic><topic>Constant-composition codes</topic><topic>difference families</topic><topic>Frequency modulation</topic><topic>Indexes</topic><topic>Johnson-type bound</topic><topic>Lower bounds</topic><topic>Memoryless systems</topic><topic>Nickel</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chee, Yeow Meng</creatorcontrib><creatorcontrib>Zhang, Xiande</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chee, Yeow Meng</au><au>Zhang, Xiande</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Size Constant-Composition Codes Meeting the Johnson Bound</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>64</volume><issue>2</issue><spage>909</spage><epage>917</epage><pages>909-917</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[The Johnson-type upper bound on the maximum size of a code of length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>, distance <inline-formula> <tex-math notation="LaTeX">d=2w-1 </tex-math></inline-formula>, and constant composition <inline-formula> <tex-math notation="LaTeX">{\overline {w}} </tex-math></inline-formula> is <inline-formula> <tex-math notation="LaTeX">\lfloor \dfrac {\vphantom {R^{.}}n}{w_{1}}\rfloor </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">w </tex-math></inline-formula> is the total weight and <inline-formula> <tex-math notation="LaTeX">w_{1} </tex-math></inline-formula> is the largest component of <inline-formula> <tex-math notation="LaTeX">{\overline {w}} </tex-math></inline-formula>. Recently, Chee et al. proved that this upper bound can be achieved for all constant-composition codes of sufficiently large lengths. Let <inline-formula> <tex-math notation="LaTeX">N_{ccc}({\overline {w}}) </tex-math></inline-formula> be the smallest such length. The determination of <inline-formula> <tex-math notation="LaTeX">N_{ccc}({\overline {w}}) </tex-math></inline-formula> is trivial for binary codes. This paper provides a lower bound on <inline-formula> <tex-math notation="LaTeX">N_{ccc}({\overline {w}}) </tex-math></inline-formula>, which is shown to be tight for all ternary and quaternary codes by giving new combinatorial constructions. Consequently, by the refining method, we determine the values of <inline-formula> <tex-math notation="LaTeX">N_{ccc}({\overline {w}}) </tex-math></inline-formula>, for all <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula>-ary constant-composition codes, provided that <inline-formula> <tex-math notation="LaTeX">3w_{1}\geq w </tex-math></inline-formula> with finite possible exceptions.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2017.2689026</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7823-8068</orcidid><orcidid>https://orcid.org/0000-0003-4234-3610</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2018-02, Vol.64 (2), p.909-917 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_2174496459 |
source | IEEE Electronic Library (IEL) Journals |
subjects | balanced packings Binary codes Binary system Codes Combinatorial analysis Composition Constant-composition codes difference families Frequency modulation Indexes Johnson-type bound Lower bounds Memoryless systems Nickel Upper bound Upper bounds |
title | Linear Size Constant-Composition Codes Meeting the Johnson Bound |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Size%20Constant-Composition%20Codes%20Meeting%20the%20Johnson%20Bound&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Chee,%20Yeow%20Meng&rft.date=2018-02-01&rft.volume=64&rft.issue=2&rft.spage=909&rft.epage=917&rft.pages=909-917&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2017.2689026&rft_dat=%3Cproquest_cross%3E2174496459%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-8c65d013ef80fd796e483e551a0425c19e10cf96c56e7705109c0eb5122690b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174496459&rft_id=info:pmid/&rft_ieee_id=7889025&rfr_iscdi=true |