Loading…

Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems

Aortic pressure (P a ) is important for diagnosis of cardiovascular diseases, but it cannot be directly measured by noninvasive means. We present a method for its estimation by modeling arterial system as multichannel Weiner system with linear finite impulse response filter accounting for larger art...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2018-06, Vol.65 (6), p.1193-1200
Main Authors: Patel, Amit M., Li, John K-J., Finegan, Barry, McMurtry, Michael S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43
cites cdi_FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43
container_end_page 1200
container_issue 6
container_start_page 1193
container_title IEEE transactions on biomedical engineering
container_volume 65
creator Patel, Amit M.
Li, John K-J.
Finegan, Barry
McMurtry, Michael S.
description Aortic pressure (P a ) is important for diagnosis of cardiovascular diseases, but it cannot be directly measured by noninvasive means. We present a method for its estimation by modeling arterial system as multichannel Weiner system with linear finite impulse response filter accounting for larger arteries transmission channel and nonlinear memoryless function block accounting for all nonlinearities due to narrowing of arteries, branching and visco-elastic forces. With this structure when pressure waveforms are measured from two distinct peripheral locations, multichannel blind system identification (MBSI) technique can be used to estimate common input pressure signal or P a . Nonlinear MBSI method was employed on previously acquired human hemodynamic measurements (seven datasets); results show P a can be accurately derived. This method by nature is self-calibrating to account for any interpersonal, along with intrapersonal, vascular dynamics inconstancy. Besides Pa estimation, the proposed MBSI method also allows extraction of system dynamics for vascular channels.
doi_str_mv 10.1109/TBME.2017.2688425
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_journals_2174501416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7888499</ieee_id><sourcerecordid>1884167694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYNY7Fr9ACJIwBdfZs2_mUket2WrC60V2uJjyCR3NGU2MyYZSr99M-zaB5-Sw_2dy-UchD5QsqaUqK9359fbNSO0XbNGSsHqV2hF61pWrOb0NVoRQmWlmBKn6G1KD0UKKZo36JRJXgxErNDjZozZW_wzQkpzBLxN2e9N9mPA98mH3_h88MHhnYOQfe_tYbSZpjga-weX_22hBsC7MM0ZX89D9lORN3Ne9I8xFD-YiH95CBDx7VPKsE_v0ElvhgTvj-8Zur_c3l18r65uvu0uNleV5ULlytGeSlLztme1q0F2givLnSHGdIyAdD0zUlDFbVerhveOyc4620JLHMhe8DP05bC33Pt3hpT13icLw2ACjHPStORGm7ZRC_r5P_RhnGMo12lGW1GX9GhTKHqgbBxTitDrKZbA4pOmRC-t6KUVvbSij60Uz6fj5rnbg3tx_KuhAB8PgAeAl3Eri10p_gyT2JJu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174501416</pqid></control><display><type>article</type><title>Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems</title><source>IEEE Xplore All Conference Series</source><creator>Patel, Amit M. ; Li, John K-J. ; Finegan, Barry ; McMurtry, Michael S.</creator><creatorcontrib>Patel, Amit M. ; Li, John K-J. ; Finegan, Barry ; McMurtry, Michael S.</creatorcontrib><description>Aortic pressure (P a ) is important for diagnosis of cardiovascular diseases, but it cannot be directly measured by noninvasive means. We present a method for its estimation by modeling arterial system as multichannel Weiner system with linear finite impulse response filter accounting for larger arteries transmission channel and nonlinear memoryless function block accounting for all nonlinearities due to narrowing of arteries, branching and visco-elastic forces. With this structure when pressure waveforms are measured from two distinct peripheral locations, multichannel blind system identification (MBSI) technique can be used to estimate common input pressure signal or P a . Nonlinear MBSI method was employed on previously acquired human hemodynamic measurements (seven datasets); results show P a can be accurately derived. This method by nature is self-calibrating to account for any interpersonal, along with intrapersonal, vascular dynamics inconstancy. Besides Pa estimation, the proposed MBSI method also allows extraction of system dynamics for vascular channels.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2017.2688425</identifier><identifier>PMID: 28368804</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aorta ; Aortic pressure ; arterial system model ; Arteries ; Biomedical measurement ; Cardiovascular diseases ; Finite impulse response filters ; FIR filters ; Heart diseases ; Hemodynamics ; Kernel ; Mathematical model ; Maximum likelihood detection ; Nonlinear systems ; Pressure ; Pressure measurement ; System dynamics ; System identification ; transfer function ; Viscoelasticity ; Waveforms</subject><ispartof>IEEE transactions on biomedical engineering, 2018-06, Vol.65 (6), p.1193-1200</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43</citedby><cites>FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43</cites><orcidid>0000-0002-1810-7805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7888499$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54553,54794,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7888499$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28368804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Amit M.</creatorcontrib><creatorcontrib>Li, John K-J.</creatorcontrib><creatorcontrib>Finegan, Barry</creatorcontrib><creatorcontrib>McMurtry, Michael S.</creatorcontrib><title>Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Aortic pressure (P a ) is important for diagnosis of cardiovascular diseases, but it cannot be directly measured by noninvasive means. We present a method for its estimation by modeling arterial system as multichannel Weiner system with linear finite impulse response filter accounting for larger arteries transmission channel and nonlinear memoryless function block accounting for all nonlinearities due to narrowing of arteries, branching and visco-elastic forces. With this structure when pressure waveforms are measured from two distinct peripheral locations, multichannel blind system identification (MBSI) technique can be used to estimate common input pressure signal or P a . Nonlinear MBSI method was employed on previously acquired human hemodynamic measurements (seven datasets); results show P a can be accurately derived. This method by nature is self-calibrating to account for any interpersonal, along with intrapersonal, vascular dynamics inconstancy. Besides Pa estimation, the proposed MBSI method also allows extraction of system dynamics for vascular channels.</description><subject>Aorta</subject><subject>Aortic pressure</subject><subject>arterial system model</subject><subject>Arteries</subject><subject>Biomedical measurement</subject><subject>Cardiovascular diseases</subject><subject>Finite impulse response filters</subject><subject>FIR filters</subject><subject>Heart diseases</subject><subject>Hemodynamics</subject><subject>Kernel</subject><subject>Mathematical model</subject><subject>Maximum likelihood detection</subject><subject>Nonlinear systems</subject><subject>Pressure</subject><subject>Pressure measurement</subject><subject>System dynamics</subject><subject>System identification</subject><subject>transfer function</subject><subject>Viscoelasticity</subject><subject>Waveforms</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkV9rFDEUxYNY7Fr9ACJIwBdfZs2_mUket2WrC60V2uJjyCR3NGU2MyYZSr99M-zaB5-Sw_2dy-UchD5QsqaUqK9359fbNSO0XbNGSsHqV2hF61pWrOb0NVoRQmWlmBKn6G1KD0UKKZo36JRJXgxErNDjZozZW_wzQkpzBLxN2e9N9mPA98mH3_h88MHhnYOQfe_tYbSZpjga-weX_22hBsC7MM0ZX89D9lORN3Ne9I8xFD-YiH95CBDx7VPKsE_v0ElvhgTvj-8Zur_c3l18r65uvu0uNleV5ULlytGeSlLztme1q0F2givLnSHGdIyAdD0zUlDFbVerhveOyc4620JLHMhe8DP05bC33Pt3hpT13icLw2ACjHPStORGm7ZRC_r5P_RhnGMo12lGW1GX9GhTKHqgbBxTitDrKZbA4pOmRC-t6KUVvbSij60Uz6fj5rnbg3tx_KuhAB8PgAeAl3Eri10p_gyT2JJu</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Patel, Amit M.</creator><creator>Li, John K-J.</creator><creator>Finegan, Barry</creator><creator>McMurtry, Michael S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1810-7805</orcidid></search><sort><creationdate>20180601</creationdate><title>Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems</title><author>Patel, Amit M. ; Li, John K-J. ; Finegan, Barry ; McMurtry, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aorta</topic><topic>Aortic pressure</topic><topic>arterial system model</topic><topic>Arteries</topic><topic>Biomedical measurement</topic><topic>Cardiovascular diseases</topic><topic>Finite impulse response filters</topic><topic>FIR filters</topic><topic>Heart diseases</topic><topic>Hemodynamics</topic><topic>Kernel</topic><topic>Mathematical model</topic><topic>Maximum likelihood detection</topic><topic>Nonlinear systems</topic><topic>Pressure</topic><topic>Pressure measurement</topic><topic>System dynamics</topic><topic>System identification</topic><topic>transfer function</topic><topic>Viscoelasticity</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Amit M.</creatorcontrib><creatorcontrib>Li, John K-J.</creatorcontrib><creatorcontrib>Finegan, Barry</creatorcontrib><creatorcontrib>McMurtry, Michael S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Patel, Amit M.</au><au>Li, John K-J.</au><au>Finegan, Barry</au><au>McMurtry, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>65</volume><issue>6</issue><spage>1193</spage><epage>1200</epage><pages>1193-1200</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Aortic pressure (P a ) is important for diagnosis of cardiovascular diseases, but it cannot be directly measured by noninvasive means. We present a method for its estimation by modeling arterial system as multichannel Weiner system with linear finite impulse response filter accounting for larger arteries transmission channel and nonlinear memoryless function block accounting for all nonlinearities due to narrowing of arteries, branching and visco-elastic forces. With this structure when pressure waveforms are measured from two distinct peripheral locations, multichannel blind system identification (MBSI) technique can be used to estimate common input pressure signal or P a . Nonlinear MBSI method was employed on previously acquired human hemodynamic measurements (seven datasets); results show P a can be accurately derived. This method by nature is self-calibrating to account for any interpersonal, along with intrapersonal, vascular dynamics inconstancy. Besides Pa estimation, the proposed MBSI method also allows extraction of system dynamics for vascular channels.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28368804</pmid><doi>10.1109/TBME.2017.2688425</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1810-7805</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2018-06, Vol.65 (6), p.1193-1200
issn 0018-9294
1558-2531
language eng
recordid cdi_proquest_journals_2174501416
source IEEE Xplore All Conference Series
subjects Aorta
Aortic pressure
arterial system model
Arteries
Biomedical measurement
Cardiovascular diseases
Finite impulse response filters
FIR filters
Heart diseases
Hemodynamics
Kernel
Mathematical model
Maximum likelihood detection
Nonlinear systems
Pressure
Pressure measurement
System dynamics
System identification
transfer function
Viscoelasticity
Waveforms
title Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aortic%20Pressure%20Estimation%20Using%20Blind%20Identification%20Approach%20on%20Single%20Input%20Multiple%20Output%20Nonlinear%20Wiener%20Systems&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Patel,%20Amit%20M.&rft.date=2018-06-01&rft.volume=65&rft.issue=6&rft.spage=1193&rft.epage=1200&rft.pages=1193-1200&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2017.2688425&rft_dat=%3Cproquest_CHZPO%3E1884167694%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174501416&rft_id=info:pmid/28368804&rft_ieee_id=7888499&rfr_iscdi=true