Loading…
Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems
Aortic pressure (P a ) is important for diagnosis of cardiovascular diseases, but it cannot be directly measured by noninvasive means. We present a method for its estimation by modeling arterial system as multichannel Weiner system with linear finite impulse response filter accounting for larger art...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2018-06, Vol.65 (6), p.1193-1200 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43 |
container_end_page | 1200 |
container_issue | 6 |
container_start_page | 1193 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 65 |
creator | Patel, Amit M. Li, John K-J. Finegan, Barry McMurtry, Michael S. |
description | Aortic pressure (P a ) is important for diagnosis of cardiovascular diseases, but it cannot be directly measured by noninvasive means. We present a method for its estimation by modeling arterial system as multichannel Weiner system with linear finite impulse response filter accounting for larger arteries transmission channel and nonlinear memoryless function block accounting for all nonlinearities due to narrowing of arteries, branching and visco-elastic forces. With this structure when pressure waveforms are measured from two distinct peripheral locations, multichannel blind system identification (MBSI) technique can be used to estimate common input pressure signal or P a . Nonlinear MBSI method was employed on previously acquired human hemodynamic measurements (seven datasets); results show P a can be accurately derived. This method by nature is self-calibrating to account for any interpersonal, along with intrapersonal, vascular dynamics inconstancy. Besides Pa estimation, the proposed MBSI method also allows extraction of system dynamics for vascular channels. |
doi_str_mv | 10.1109/TBME.2017.2688425 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_journals_2174501416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7888499</ieee_id><sourcerecordid>1884167694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYNY7Fr9ACJIwBdfZs2_mUket2WrC60V2uJjyCR3NGU2MyYZSr99M-zaB5-Sw_2dy-UchD5QsqaUqK9359fbNSO0XbNGSsHqV2hF61pWrOb0NVoRQmWlmBKn6G1KD0UKKZo36JRJXgxErNDjZozZW_wzQkpzBLxN2e9N9mPA98mH3_h88MHhnYOQfe_tYbSZpjga-weX_22hBsC7MM0ZX89D9lORN3Ne9I8xFD-YiH95CBDx7VPKsE_v0ElvhgTvj-8Zur_c3l18r65uvu0uNleV5ULlytGeSlLztme1q0F2givLnSHGdIyAdD0zUlDFbVerhveOyc4620JLHMhe8DP05bC33Pt3hpT13icLw2ACjHPStORGm7ZRC_r5P_RhnGMo12lGW1GX9GhTKHqgbBxTitDrKZbA4pOmRC-t6KUVvbSij60Uz6fj5rnbg3tx_KuhAB8PgAeAl3Eri10p_gyT2JJu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174501416</pqid></control><display><type>article</type><title>Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems</title><source>IEEE Xplore All Conference Series</source><creator>Patel, Amit M. ; Li, John K-J. ; Finegan, Barry ; McMurtry, Michael S.</creator><creatorcontrib>Patel, Amit M. ; Li, John K-J. ; Finegan, Barry ; McMurtry, Michael S.</creatorcontrib><description>Aortic pressure (P a ) is important for diagnosis of cardiovascular diseases, but it cannot be directly measured by noninvasive means. We present a method for its estimation by modeling arterial system as multichannel Weiner system with linear finite impulse response filter accounting for larger arteries transmission channel and nonlinear memoryless function block accounting for all nonlinearities due to narrowing of arteries, branching and visco-elastic forces. With this structure when pressure waveforms are measured from two distinct peripheral locations, multichannel blind system identification (MBSI) technique can be used to estimate common input pressure signal or P a . Nonlinear MBSI method was employed on previously acquired human hemodynamic measurements (seven datasets); results show P a can be accurately derived. This method by nature is self-calibrating to account for any interpersonal, along with intrapersonal, vascular dynamics inconstancy. Besides Pa estimation, the proposed MBSI method also allows extraction of system dynamics for vascular channels.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2017.2688425</identifier><identifier>PMID: 28368804</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aorta ; Aortic pressure ; arterial system model ; Arteries ; Biomedical measurement ; Cardiovascular diseases ; Finite impulse response filters ; FIR filters ; Heart diseases ; Hemodynamics ; Kernel ; Mathematical model ; Maximum likelihood detection ; Nonlinear systems ; Pressure ; Pressure measurement ; System dynamics ; System identification ; transfer function ; Viscoelasticity ; Waveforms</subject><ispartof>IEEE transactions on biomedical engineering, 2018-06, Vol.65 (6), p.1193-1200</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43</citedby><cites>FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43</cites><orcidid>0000-0002-1810-7805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7888499$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54553,54794,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7888499$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28368804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Amit M.</creatorcontrib><creatorcontrib>Li, John K-J.</creatorcontrib><creatorcontrib>Finegan, Barry</creatorcontrib><creatorcontrib>McMurtry, Michael S.</creatorcontrib><title>Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Aortic pressure (P a ) is important for diagnosis of cardiovascular diseases, but it cannot be directly measured by noninvasive means. We present a method for its estimation by modeling arterial system as multichannel Weiner system with linear finite impulse response filter accounting for larger arteries transmission channel and nonlinear memoryless function block accounting for all nonlinearities due to narrowing of arteries, branching and visco-elastic forces. With this structure when pressure waveforms are measured from two distinct peripheral locations, multichannel blind system identification (MBSI) technique can be used to estimate common input pressure signal or P a . Nonlinear MBSI method was employed on previously acquired human hemodynamic measurements (seven datasets); results show P a can be accurately derived. This method by nature is self-calibrating to account for any interpersonal, along with intrapersonal, vascular dynamics inconstancy. Besides Pa estimation, the proposed MBSI method also allows extraction of system dynamics for vascular channels.</description><subject>Aorta</subject><subject>Aortic pressure</subject><subject>arterial system model</subject><subject>Arteries</subject><subject>Biomedical measurement</subject><subject>Cardiovascular diseases</subject><subject>Finite impulse response filters</subject><subject>FIR filters</subject><subject>Heart diseases</subject><subject>Hemodynamics</subject><subject>Kernel</subject><subject>Mathematical model</subject><subject>Maximum likelihood detection</subject><subject>Nonlinear systems</subject><subject>Pressure</subject><subject>Pressure measurement</subject><subject>System dynamics</subject><subject>System identification</subject><subject>transfer function</subject><subject>Viscoelasticity</subject><subject>Waveforms</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkV9rFDEUxYNY7Fr9ACJIwBdfZs2_mUket2WrC60V2uJjyCR3NGU2MyYZSr99M-zaB5-Sw_2dy-UchD5QsqaUqK9359fbNSO0XbNGSsHqV2hF61pWrOb0NVoRQmWlmBKn6G1KD0UKKZo36JRJXgxErNDjZozZW_wzQkpzBLxN2e9N9mPA98mH3_h88MHhnYOQfe_tYbSZpjga-weX_22hBsC7MM0ZX89D9lORN3Ne9I8xFD-YiH95CBDx7VPKsE_v0ElvhgTvj-8Zur_c3l18r65uvu0uNleV5ULlytGeSlLztme1q0F2givLnSHGdIyAdD0zUlDFbVerhveOyc4620JLHMhe8DP05bC33Pt3hpT13icLw2ACjHPStORGm7ZRC_r5P_RhnGMo12lGW1GX9GhTKHqgbBxTitDrKZbA4pOmRC-t6KUVvbSij60Uz6fj5rnbg3tx_KuhAB8PgAeAl3Eri10p_gyT2JJu</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Patel, Amit M.</creator><creator>Li, John K-J.</creator><creator>Finegan, Barry</creator><creator>McMurtry, Michael S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1810-7805</orcidid></search><sort><creationdate>20180601</creationdate><title>Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems</title><author>Patel, Amit M. ; Li, John K-J. ; Finegan, Barry ; McMurtry, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aorta</topic><topic>Aortic pressure</topic><topic>arterial system model</topic><topic>Arteries</topic><topic>Biomedical measurement</topic><topic>Cardiovascular diseases</topic><topic>Finite impulse response filters</topic><topic>FIR filters</topic><topic>Heart diseases</topic><topic>Hemodynamics</topic><topic>Kernel</topic><topic>Mathematical model</topic><topic>Maximum likelihood detection</topic><topic>Nonlinear systems</topic><topic>Pressure</topic><topic>Pressure measurement</topic><topic>System dynamics</topic><topic>System identification</topic><topic>transfer function</topic><topic>Viscoelasticity</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Amit M.</creatorcontrib><creatorcontrib>Li, John K-J.</creatorcontrib><creatorcontrib>Finegan, Barry</creatorcontrib><creatorcontrib>McMurtry, Michael S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Patel, Amit M.</au><au>Li, John K-J.</au><au>Finegan, Barry</au><au>McMurtry, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>65</volume><issue>6</issue><spage>1193</spage><epage>1200</epage><pages>1193-1200</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Aortic pressure (P a ) is important for diagnosis of cardiovascular diseases, but it cannot be directly measured by noninvasive means. We present a method for its estimation by modeling arterial system as multichannel Weiner system with linear finite impulse response filter accounting for larger arteries transmission channel and nonlinear memoryless function block accounting for all nonlinearities due to narrowing of arteries, branching and visco-elastic forces. With this structure when pressure waveforms are measured from two distinct peripheral locations, multichannel blind system identification (MBSI) technique can be used to estimate common input pressure signal or P a . Nonlinear MBSI method was employed on previously acquired human hemodynamic measurements (seven datasets); results show P a can be accurately derived. This method by nature is self-calibrating to account for any interpersonal, along with intrapersonal, vascular dynamics inconstancy. Besides Pa estimation, the proposed MBSI method also allows extraction of system dynamics for vascular channels.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28368804</pmid><doi>10.1109/TBME.2017.2688425</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1810-7805</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 2018-06, Vol.65 (6), p.1193-1200 |
issn | 0018-9294 1558-2531 |
language | eng |
recordid | cdi_proquest_journals_2174501416 |
source | IEEE Xplore All Conference Series |
subjects | Aorta Aortic pressure arterial system model Arteries Biomedical measurement Cardiovascular diseases Finite impulse response filters FIR filters Heart diseases Hemodynamics Kernel Mathematical model Maximum likelihood detection Nonlinear systems Pressure Pressure measurement System dynamics System identification transfer function Viscoelasticity Waveforms |
title | Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aortic%20Pressure%20Estimation%20Using%20Blind%20Identification%20Approach%20on%20Single%20Input%20Multiple%20Output%20Nonlinear%20Wiener%20Systems&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Patel,%20Amit%20M.&rft.date=2018-06-01&rft.volume=65&rft.issue=6&rft.spage=1193&rft.epage=1200&rft.pages=1193-1200&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2017.2688425&rft_dat=%3Cproquest_CHZPO%3E1884167694%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-d1f180537f25d5e8b439c3da0aab20e8df2a84193cb5963fd28bcdc7e70de8f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174501416&rft_id=info:pmid/28368804&rft_ieee_id=7888499&rfr_iscdi=true |