Loading…

Low-Complexity Nonlinear Zero-Forcing Precoding Under Per-Line Power Constraints for Improved Downstream G.fast Active-User Peak-Rates

We consider nonlinear zero-forcing (ZF) precoding design to improve the downstream G.fast peak-rates when only a few users in the cable binder are active. In order to compute the optimal nonlinear ZF precoder under per-line power constraints (PLPCs), we present a novel low-complexity dual decomposit...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2018-06, Vol.66 (6), p.2696-2707
Main Authors: Lanneer, Wouter, Tsiaflakis, Paschalis, Maes, Jochen, Moonen, Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203
cites cdi_FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203
container_end_page 2707
container_issue 6
container_start_page 2696
container_title IEEE transactions on communications
container_volume 66
creator Lanneer, Wouter
Tsiaflakis, Paschalis
Maes, Jochen
Moonen, Marc
description We consider nonlinear zero-forcing (ZF) precoding design to improve the downstream G.fast peak-rates when only a few users in the cable binder are active. In order to compute the optimal nonlinear ZF precoder under per-line power constraints (PLPCs), we present a novel low-complexity dual decomposition algorithm, in which the key is the use of Lagrange multiplier based virtual precoders to transform the PLPCs into an easier virtual sum-power constraint (SPC), such that the SPC-optimality of the QR decomposition-based precoder may be exploited. We show a reduced computational complexity of this algorithm over the state-of-the-art SVD-block-diagonalization-based dual decomposition algorithm. We present simulations of a 10-line cable binder that demonstrate substantial peak-rate gains over standard QR decomposition-based ZF precoding in DSL, due to the increasingly stronger crosstalk channels in the G.fast frequency range (up to 212 MHz). Furthermore, we show that the proposed algorithm naturally extends to the scenario with multiple lines terminating at the customer premise equipments.
doi_str_mv 10.1109/TCOMM.2018.2799613
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174502060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8274919</ieee_id><sourcerecordid>2174502060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EEqVwAdhYYu0ytuvYXqLwKxVaIbphE7nJGAXauNiBwgU4NwlFrGZG896b0UfIMYcR52DPHvPp3d1IADcjoa3NuNwhA66UYWCU3iUDAAss09rsk4OUXgBgDFIOyPckbFgeVuslftbtF70PzbJu0EX6hDGwqxDLunmms4hlqPpu3lQY6Qwjm3Q6OgubbsxDk9ro6qZN1IdIb1frGD6wohdh02_Qrej1yLvU0vOyrT-QzdNvintlD67FdEj2vFsmPPqrQzK_unzMb9hken2bn09YKaVtmc2c1QvvtTKVzoQHLzJlpAOFygknK2uNRFNldoGl8SXyhQPujcLKcSFADsnpNrf77-0dU1u8hPfYdCcLwfVYgYCsV4mtqowhpYi-WMd65eJXwaHoeRe_vIued_HHuzOdbE01Iv4bjNBjy638AZS1fhY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174502060</pqid></control><display><type>article</type><title>Low-Complexity Nonlinear Zero-Forcing Precoding Under Per-Line Power Constraints for Improved Downstream G.fast Active-User Peak-Rates</title><source>IEEE Xplore (Online service)</source><creator>Lanneer, Wouter ; Tsiaflakis, Paschalis ; Maes, Jochen ; Moonen, Marc</creator><creatorcontrib>Lanneer, Wouter ; Tsiaflakis, Paschalis ; Maes, Jochen ; Moonen, Marc</creatorcontrib><description>We consider nonlinear zero-forcing (ZF) precoding design to improve the downstream G.fast peak-rates when only a few users in the cable binder are active. In order to compute the optimal nonlinear ZF precoder under per-line power constraints (PLPCs), we present a novel low-complexity dual decomposition algorithm, in which the key is the use of Lagrange multiplier based virtual precoders to transform the PLPCs into an easier virtual sum-power constraint (SPC), such that the SPC-optimality of the QR decomposition-based precoder may be exploited. We show a reduced computational complexity of this algorithm over the state-of-the-art SVD-block-diagonalization-based dual decomposition algorithm. We present simulations of a 10-line cable binder that demonstrate substantial peak-rate gains over standard QR decomposition-based ZF precoding in DSL, due to the increasingly stronger crosstalk channels in the G.fast frequency range (up to 212 MHz). Furthermore, we show that the proposed algorithm naturally extends to the scenario with multiple lines terminating at the customer premise equipments.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2018.2799613</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Complexity ; Computer simulation ; Crosstalk ; Decomposition ; DSL ; dynamic spectrum management ; Frequency ranges ; G.fast ; Lagrange multiplier ; nonlinear precoding ; Optimization ; per-line power constraints ; Precoding ; Signal to noise ratio ; State of the art ; zero-forcing (ZF)</subject><ispartof>IEEE transactions on communications, 2018-06, Vol.66 (6), p.2696-2707</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203</citedby><cites>FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203</cites><orcidid>0000-0003-4461-0073 ; 0000-0003-2823-3474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8274919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lanneer, Wouter</creatorcontrib><creatorcontrib>Tsiaflakis, Paschalis</creatorcontrib><creatorcontrib>Maes, Jochen</creatorcontrib><creatorcontrib>Moonen, Marc</creatorcontrib><title>Low-Complexity Nonlinear Zero-Forcing Precoding Under Per-Line Power Constraints for Improved Downstream G.fast Active-User Peak-Rates</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>We consider nonlinear zero-forcing (ZF) precoding design to improve the downstream G.fast peak-rates when only a few users in the cable binder are active. In order to compute the optimal nonlinear ZF precoder under per-line power constraints (PLPCs), we present a novel low-complexity dual decomposition algorithm, in which the key is the use of Lagrange multiplier based virtual precoders to transform the PLPCs into an easier virtual sum-power constraint (SPC), such that the SPC-optimality of the QR decomposition-based precoder may be exploited. We show a reduced computational complexity of this algorithm over the state-of-the-art SVD-block-diagonalization-based dual decomposition algorithm. We present simulations of a 10-line cable binder that demonstrate substantial peak-rate gains over standard QR decomposition-based ZF precoding in DSL, due to the increasingly stronger crosstalk channels in the G.fast frequency range (up to 212 MHz). Furthermore, we show that the proposed algorithm naturally extends to the scenario with multiple lines terminating at the customer premise equipments.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Crosstalk</subject><subject>Decomposition</subject><subject>DSL</subject><subject>dynamic spectrum management</subject><subject>Frequency ranges</subject><subject>G.fast</subject><subject>Lagrange multiplier</subject><subject>nonlinear precoding</subject><subject>Optimization</subject><subject>per-line power constraints</subject><subject>Precoding</subject><subject>Signal to noise ratio</subject><subject>State of the art</subject><subject>zero-forcing (ZF)</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhS0EEqVwAdhYYu0ytuvYXqLwKxVaIbphE7nJGAXauNiBwgU4NwlFrGZG896b0UfIMYcR52DPHvPp3d1IADcjoa3NuNwhA66UYWCU3iUDAAss09rsk4OUXgBgDFIOyPckbFgeVuslftbtF70PzbJu0EX6hDGwqxDLunmms4hlqPpu3lQY6Qwjm3Q6OgubbsxDk9ro6qZN1IdIb1frGD6wohdh02_Qrej1yLvU0vOyrT-QzdNvintlD67FdEj2vFsmPPqrQzK_unzMb9hken2bn09YKaVtmc2c1QvvtTKVzoQHLzJlpAOFygknK2uNRFNldoGl8SXyhQPujcLKcSFADsnpNrf77-0dU1u8hPfYdCcLwfVYgYCsV4mtqowhpYi-WMd65eJXwaHoeRe_vIued_HHuzOdbE01Iv4bjNBjy638AZS1fhY</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Lanneer, Wouter</creator><creator>Tsiaflakis, Paschalis</creator><creator>Maes, Jochen</creator><creator>Moonen, Marc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4461-0073</orcidid><orcidid>https://orcid.org/0000-0003-2823-3474</orcidid></search><sort><creationdate>20180601</creationdate><title>Low-Complexity Nonlinear Zero-Forcing Precoding Under Per-Line Power Constraints for Improved Downstream G.fast Active-User Peak-Rates</title><author>Lanneer, Wouter ; Tsiaflakis, Paschalis ; Maes, Jochen ; Moonen, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Crosstalk</topic><topic>Decomposition</topic><topic>DSL</topic><topic>dynamic spectrum management</topic><topic>Frequency ranges</topic><topic>G.fast</topic><topic>Lagrange multiplier</topic><topic>nonlinear precoding</topic><topic>Optimization</topic><topic>per-line power constraints</topic><topic>Precoding</topic><topic>Signal to noise ratio</topic><topic>State of the art</topic><topic>zero-forcing (ZF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanneer, Wouter</creatorcontrib><creatorcontrib>Tsiaflakis, Paschalis</creatorcontrib><creatorcontrib>Maes, Jochen</creatorcontrib><creatorcontrib>Moonen, Marc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanneer, Wouter</au><au>Tsiaflakis, Paschalis</au><au>Maes, Jochen</au><au>Moonen, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Complexity Nonlinear Zero-Forcing Precoding Under Per-Line Power Constraints for Improved Downstream G.fast Active-User Peak-Rates</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>66</volume><issue>6</issue><spage>2696</spage><epage>2707</epage><pages>2696-2707</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>We consider nonlinear zero-forcing (ZF) precoding design to improve the downstream G.fast peak-rates when only a few users in the cable binder are active. In order to compute the optimal nonlinear ZF precoder under per-line power constraints (PLPCs), we present a novel low-complexity dual decomposition algorithm, in which the key is the use of Lagrange multiplier based virtual precoders to transform the PLPCs into an easier virtual sum-power constraint (SPC), such that the SPC-optimality of the QR decomposition-based precoder may be exploited. We show a reduced computational complexity of this algorithm over the state-of-the-art SVD-block-diagonalization-based dual decomposition algorithm. We present simulations of a 10-line cable binder that demonstrate substantial peak-rate gains over standard QR decomposition-based ZF precoding in DSL, due to the increasingly stronger crosstalk channels in the G.fast frequency range (up to 212 MHz). Furthermore, we show that the proposed algorithm naturally extends to the scenario with multiple lines terminating at the customer premise equipments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2018.2799613</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4461-0073</orcidid><orcidid>https://orcid.org/0000-0003-2823-3474</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2018-06, Vol.66 (6), p.2696-2707
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_journals_2174502060
source IEEE Xplore (Online service)
subjects Algorithm design and analysis
Algorithms
Complexity
Computer simulation
Crosstalk
Decomposition
DSL
dynamic spectrum management
Frequency ranges
G.fast
Lagrange multiplier
nonlinear precoding
Optimization
per-line power constraints
Precoding
Signal to noise ratio
State of the art
zero-forcing (ZF)
title Low-Complexity Nonlinear Zero-Forcing Precoding Under Per-Line Power Constraints for Improved Downstream G.fast Active-User Peak-Rates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Complexity%20Nonlinear%20Zero-Forcing%20Precoding%20Under%20Per-Line%20Power%20Constraints%20for%20Improved%20Downstream%20G.fast%20Active-User%20Peak-Rates&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Lanneer,%20Wouter&rft.date=2018-06-01&rft.volume=66&rft.issue=6&rft.spage=2696&rft.epage=2707&rft.pages=2696-2707&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2018.2799613&rft_dat=%3Cproquest_cross%3E2174502060%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174502060&rft_id=info:pmid/&rft_ieee_id=8274919&rfr_iscdi=true