Loading…
Low-Complexity Nonlinear Zero-Forcing Precoding Under Per-Line Power Constraints for Improved Downstream G.fast Active-User Peak-Rates
We consider nonlinear zero-forcing (ZF) precoding design to improve the downstream G.fast peak-rates when only a few users in the cable binder are active. In order to compute the optimal nonlinear ZF precoder under per-line power constraints (PLPCs), we present a novel low-complexity dual decomposit...
Saved in:
Published in: | IEEE transactions on communications 2018-06, Vol.66 (6), p.2696-2707 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203 |
container_end_page | 2707 |
container_issue | 6 |
container_start_page | 2696 |
container_title | IEEE transactions on communications |
container_volume | 66 |
creator | Lanneer, Wouter Tsiaflakis, Paschalis Maes, Jochen Moonen, Marc |
description | We consider nonlinear zero-forcing (ZF) precoding design to improve the downstream G.fast peak-rates when only a few users in the cable binder are active. In order to compute the optimal nonlinear ZF precoder under per-line power constraints (PLPCs), we present a novel low-complexity dual decomposition algorithm, in which the key is the use of Lagrange multiplier based virtual precoders to transform the PLPCs into an easier virtual sum-power constraint (SPC), such that the SPC-optimality of the QR decomposition-based precoder may be exploited. We show a reduced computational complexity of this algorithm over the state-of-the-art SVD-block-diagonalization-based dual decomposition algorithm. We present simulations of a 10-line cable binder that demonstrate substantial peak-rate gains over standard QR decomposition-based ZF precoding in DSL, due to the increasingly stronger crosstalk channels in the G.fast frequency range (up to 212 MHz). Furthermore, we show that the proposed algorithm naturally extends to the scenario with multiple lines terminating at the customer premise equipments. |
doi_str_mv | 10.1109/TCOMM.2018.2799613 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174502060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8274919</ieee_id><sourcerecordid>2174502060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EEqVwAdhYYu0ytuvYXqLwKxVaIbphE7nJGAXauNiBwgU4NwlFrGZG896b0UfIMYcR52DPHvPp3d1IADcjoa3NuNwhA66UYWCU3iUDAAss09rsk4OUXgBgDFIOyPckbFgeVuslftbtF70PzbJu0EX6hDGwqxDLunmms4hlqPpu3lQY6Qwjm3Q6OgubbsxDk9ro6qZN1IdIb1frGD6wohdh02_Qrej1yLvU0vOyrT-QzdNvintlD67FdEj2vFsmPPqrQzK_unzMb9hken2bn09YKaVtmc2c1QvvtTKVzoQHLzJlpAOFygknK2uNRFNldoGl8SXyhQPujcLKcSFADsnpNrf77-0dU1u8hPfYdCcLwfVYgYCsV4mtqowhpYi-WMd65eJXwaHoeRe_vIued_HHuzOdbE01Iv4bjNBjy638AZS1fhY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174502060</pqid></control><display><type>article</type><title>Low-Complexity Nonlinear Zero-Forcing Precoding Under Per-Line Power Constraints for Improved Downstream G.fast Active-User Peak-Rates</title><source>IEEE Xplore (Online service)</source><creator>Lanneer, Wouter ; Tsiaflakis, Paschalis ; Maes, Jochen ; Moonen, Marc</creator><creatorcontrib>Lanneer, Wouter ; Tsiaflakis, Paschalis ; Maes, Jochen ; Moonen, Marc</creatorcontrib><description>We consider nonlinear zero-forcing (ZF) precoding design to improve the downstream G.fast peak-rates when only a few users in the cable binder are active. In order to compute the optimal nonlinear ZF precoder under per-line power constraints (PLPCs), we present a novel low-complexity dual decomposition algorithm, in which the key is the use of Lagrange multiplier based virtual precoders to transform the PLPCs into an easier virtual sum-power constraint (SPC), such that the SPC-optimality of the QR decomposition-based precoder may be exploited. We show a reduced computational complexity of this algorithm over the state-of-the-art SVD-block-diagonalization-based dual decomposition algorithm. We present simulations of a 10-line cable binder that demonstrate substantial peak-rate gains over standard QR decomposition-based ZF precoding in DSL, due to the increasingly stronger crosstalk channels in the G.fast frequency range (up to 212 MHz). Furthermore, we show that the proposed algorithm naturally extends to the scenario with multiple lines terminating at the customer premise equipments.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2018.2799613</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Complexity ; Computer simulation ; Crosstalk ; Decomposition ; DSL ; dynamic spectrum management ; Frequency ranges ; G.fast ; Lagrange multiplier ; nonlinear precoding ; Optimization ; per-line power constraints ; Precoding ; Signal to noise ratio ; State of the art ; zero-forcing (ZF)</subject><ispartof>IEEE transactions on communications, 2018-06, Vol.66 (6), p.2696-2707</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203</citedby><cites>FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203</cites><orcidid>0000-0003-4461-0073 ; 0000-0003-2823-3474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8274919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lanneer, Wouter</creatorcontrib><creatorcontrib>Tsiaflakis, Paschalis</creatorcontrib><creatorcontrib>Maes, Jochen</creatorcontrib><creatorcontrib>Moonen, Marc</creatorcontrib><title>Low-Complexity Nonlinear Zero-Forcing Precoding Under Per-Line Power Constraints for Improved Downstream G.fast Active-User Peak-Rates</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>We consider nonlinear zero-forcing (ZF) precoding design to improve the downstream G.fast peak-rates when only a few users in the cable binder are active. In order to compute the optimal nonlinear ZF precoder under per-line power constraints (PLPCs), we present a novel low-complexity dual decomposition algorithm, in which the key is the use of Lagrange multiplier based virtual precoders to transform the PLPCs into an easier virtual sum-power constraint (SPC), such that the SPC-optimality of the QR decomposition-based precoder may be exploited. We show a reduced computational complexity of this algorithm over the state-of-the-art SVD-block-diagonalization-based dual decomposition algorithm. We present simulations of a 10-line cable binder that demonstrate substantial peak-rate gains over standard QR decomposition-based ZF precoding in DSL, due to the increasingly stronger crosstalk channels in the G.fast frequency range (up to 212 MHz). Furthermore, we show that the proposed algorithm naturally extends to the scenario with multiple lines terminating at the customer premise equipments.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Crosstalk</subject><subject>Decomposition</subject><subject>DSL</subject><subject>dynamic spectrum management</subject><subject>Frequency ranges</subject><subject>G.fast</subject><subject>Lagrange multiplier</subject><subject>nonlinear precoding</subject><subject>Optimization</subject><subject>per-line power constraints</subject><subject>Precoding</subject><subject>Signal to noise ratio</subject><subject>State of the art</subject><subject>zero-forcing (ZF)</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhS0EEqVwAdhYYu0ytuvYXqLwKxVaIbphE7nJGAXauNiBwgU4NwlFrGZG896b0UfIMYcR52DPHvPp3d1IADcjoa3NuNwhA66UYWCU3iUDAAss09rsk4OUXgBgDFIOyPckbFgeVuslftbtF70PzbJu0EX6hDGwqxDLunmms4hlqPpu3lQY6Qwjm3Q6OgubbsxDk9ro6qZN1IdIb1frGD6wohdh02_Qrej1yLvU0vOyrT-QzdNvintlD67FdEj2vFsmPPqrQzK_unzMb9hken2bn09YKaVtmc2c1QvvtTKVzoQHLzJlpAOFygknK2uNRFNldoGl8SXyhQPujcLKcSFADsnpNrf77-0dU1u8hPfYdCcLwfVYgYCsV4mtqowhpYi-WMd65eJXwaHoeRe_vIued_HHuzOdbE01Iv4bjNBjy638AZS1fhY</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Lanneer, Wouter</creator><creator>Tsiaflakis, Paschalis</creator><creator>Maes, Jochen</creator><creator>Moonen, Marc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4461-0073</orcidid><orcidid>https://orcid.org/0000-0003-2823-3474</orcidid></search><sort><creationdate>20180601</creationdate><title>Low-Complexity Nonlinear Zero-Forcing Precoding Under Per-Line Power Constraints for Improved Downstream G.fast Active-User Peak-Rates</title><author>Lanneer, Wouter ; Tsiaflakis, Paschalis ; Maes, Jochen ; Moonen, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Crosstalk</topic><topic>Decomposition</topic><topic>DSL</topic><topic>dynamic spectrum management</topic><topic>Frequency ranges</topic><topic>G.fast</topic><topic>Lagrange multiplier</topic><topic>nonlinear precoding</topic><topic>Optimization</topic><topic>per-line power constraints</topic><topic>Precoding</topic><topic>Signal to noise ratio</topic><topic>State of the art</topic><topic>zero-forcing (ZF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanneer, Wouter</creatorcontrib><creatorcontrib>Tsiaflakis, Paschalis</creatorcontrib><creatorcontrib>Maes, Jochen</creatorcontrib><creatorcontrib>Moonen, Marc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanneer, Wouter</au><au>Tsiaflakis, Paschalis</au><au>Maes, Jochen</au><au>Moonen, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Complexity Nonlinear Zero-Forcing Precoding Under Per-Line Power Constraints for Improved Downstream G.fast Active-User Peak-Rates</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>66</volume><issue>6</issue><spage>2696</spage><epage>2707</epage><pages>2696-2707</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>We consider nonlinear zero-forcing (ZF) precoding design to improve the downstream G.fast peak-rates when only a few users in the cable binder are active. In order to compute the optimal nonlinear ZF precoder under per-line power constraints (PLPCs), we present a novel low-complexity dual decomposition algorithm, in which the key is the use of Lagrange multiplier based virtual precoders to transform the PLPCs into an easier virtual sum-power constraint (SPC), such that the SPC-optimality of the QR decomposition-based precoder may be exploited. We show a reduced computational complexity of this algorithm over the state-of-the-art SVD-block-diagonalization-based dual decomposition algorithm. We present simulations of a 10-line cable binder that demonstrate substantial peak-rate gains over standard QR decomposition-based ZF precoding in DSL, due to the increasingly stronger crosstalk channels in the G.fast frequency range (up to 212 MHz). Furthermore, we show that the proposed algorithm naturally extends to the scenario with multiple lines terminating at the customer premise equipments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2018.2799613</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4461-0073</orcidid><orcidid>https://orcid.org/0000-0003-2823-3474</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2018-06, Vol.66 (6), p.2696-2707 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_proquest_journals_2174502060 |
source | IEEE Xplore (Online service) |
subjects | Algorithm design and analysis Algorithms Complexity Computer simulation Crosstalk Decomposition DSL dynamic spectrum management Frequency ranges G.fast Lagrange multiplier nonlinear precoding Optimization per-line power constraints Precoding Signal to noise ratio State of the art zero-forcing (ZF) |
title | Low-Complexity Nonlinear Zero-Forcing Precoding Under Per-Line Power Constraints for Improved Downstream G.fast Active-User Peak-Rates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Complexity%20Nonlinear%20Zero-Forcing%20Precoding%20Under%20Per-Line%20Power%20Constraints%20for%20Improved%20Downstream%20G.fast%20Active-User%20Peak-Rates&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Lanneer,%20Wouter&rft.date=2018-06-01&rft.volume=66&rft.issue=6&rft.spage=2696&rft.epage=2707&rft.pages=2696-2707&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2018.2799613&rft_dat=%3Cproquest_cross%3E2174502060%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-96a97bff758d762f0f26583a05e5a2a3d9983e8d69bec8fce1ba01f85eda12203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174502060&rft_id=info:pmid/&rft_ieee_id=8274919&rfr_iscdi=true |