Loading…

Digital Implementation of the Two-Compartmental Pinsky–Rinzel Pyramidal Neuron Model

It is believed that brain-like computing system can be achieved by the fusion of electronics and neuroscience. In this way, the optimized digital hardware implementation of neurons, primary units of nervous system, play a vital role in neuromorphic applications. Moreover, one of the main features of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical circuits and systems 2018-02, Vol.12 (1), p.47-57
Main Authors: Rahimian, Elahe, Zabihi, Soheil, Amiri, Mahmood, Linares-Barranco, Bernabe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is believed that brain-like computing system can be achieved by the fusion of electronics and neuroscience. In this way, the optimized digital hardware implementation of neurons, primary units of nervous system, play a vital role in neuromorphic applications. Moreover, one of the main features of pyramidal neurons in cortical areas is bursting activities that has a critical role in synaptic plasticity. The Pinsky-Rinzel model is a nonlinear two-compartmental model for CA3 pyramidal cell that is widely used in neuroscience. In this paper, a modified Pinsky-Rinzel pyramidal model is proposed by replacing its complex nonlinear equations with piecewise linear approximation. Next, a digital circuit is designed for the simplified model to be able to implement on a low-cost digital hardware, such as field-programmable gate array (FPGA). Both original and proposed models are simulated in MATLAB and next digital circuit simulated in Vivado is compared to show that obtained results are in good agreement. Finally, the results of physical implementation on FPGA are also illustrated. The presented circuit advances preceding designs with regards to the ability to replicate essential characteristics of different firing responses including bursting and spiking in the compartmental model. This new circuit has various applications in neuromorphic engineering, such as developing new neuroinspired chips.
ISSN:1932-4545
1940-9990
DOI:10.1109/TBCAS.2017.2753541