Loading…
A New Kind of Accurate Calibration Method for Robotic Kinematic Parameters Based on the Extended Kalman and Particle Filter Algorithm
Precise positioning of a robot plays an very important role in advanced industrial applications, and this paper presents a new kinematic calibration method based on the extended Kalman filter (EKF) and particle filter (PF) algorithm that can significantly improves the positioning accuracy of the rob...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2018-04, Vol.65 (4), p.3337-3345 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Precise positioning of a robot plays an very important role in advanced industrial applications, and this paper presents a new kinematic calibration method based on the extended Kalman filter (EKF) and particle filter (PF) algorithm that can significantly improves the positioning accuracy of the robot. Kinematic and its error models of a robot are established, and its kinematic parameters are identified by using the EKF algorithm first. But the EKF algorithm has a kind of linear truncation error and it is useful for the Gauss noise system in general, so its identified accuracy will be affected for the highly nonlinear robot kinematic system with a non-Gauss noise system. The PF algorithm can solve this with non-Gauss noise and a high nonlinear problem well, but its calibration accuracy and efficiency are affected by the prior distribution of the initial values. Therefore, this paper proposes to use the calibration value of the EKF algorithm as the prior value of the PF algorithm, and then, the PF algorithm is used further to calibrate the kinematic parameters of the robot. Enough experiments have been carried out, and the experimental results validated the viability of the proposed method with the robot positioning accuracy improved significantly. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2017.2748058 |