Loading…
Comparison of Thyristor Rectifier Configurations for a Six-Phase Rotating Brushless Outer Pole PM Exciter
Recent technological developments have caused a renewed interest in the brushless excitation system. With the application of wireless communication, the conventional diode bridge has been replaced with fully controllable thyristors on the shaft. It offers the same dynamic performance as the conventi...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2018-02, Vol.65 (2), p.968-976 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent technological developments have caused a renewed interest in the brushless excitation system. With the application of wireless communication, the conventional diode bridge has been replaced with fully controllable thyristors on the shaft. It offers the same dynamic performance as the conventional static excitation system. The thyristor bridge of the conventional three-phase exciter needs to be controlled with a high firing angle in normal operation in order to fulfill a requirement of both a high ceiling voltage and a high ceiling current. A high firing angle causes high torque ripple to be absorbed by the exciter stator and a low power factor results in a low utilization of the designed exciter. In this contribution, we present a strategy that solves this problem by looking into combinations of thyristor configurations of a double-star six-phase connection of the exciter. Experimental results are used to verify the circuit models implemented for this investigation. A hybrid-mode 12-pulse thyristor bridge configuration seems to be a good solution for implementations in commercial apparatus. An additional switch interconnects two separate thyristor bridges from parallel- to series connection at the rectifier output, and utilizes the advantages of both topologies. |
---|---|
ISSN: | 0278-0046 1557-9948 1557-9948 |
DOI: | 10.1109/TIE.2017.2726963 |