Loading…
Correlation filter tracking algorithm based on multiple features and average peak correlation energy
Since traditional target tracking algorithms employ artificial features, they are not robust enough to describe the appearance of a target. Therefore, it is difficult to apply them to complex scenes. Moreover, the traditional target tracking algorithms do not measure the confidence level of the resp...
Saved in:
Published in: | Multimedia tools and applications 2020-06, Vol.79 (21-22), p.14671-14688 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-97af677519515fd4110e5a2231e9cd867cd054b1928962be498568ee66d201c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-97af677519515fd4110e5a2231e9cd867cd054b1928962be498568ee66d201c3 |
container_end_page | 14688 |
container_issue | 21-22 |
container_start_page | 14671 |
container_title | Multimedia tools and applications |
container_volume | 79 |
creator | Sun, Xiyan Zhang, Kaidi Ji, Yuanfa Wang, Shouhua Yan, Suqing Wu, Sunyong |
description | Since traditional target tracking algorithms employ artificial features, they are not robust enough to describe the appearance of a target. Therefore, it is difficult to apply them to complex scenes. Moreover, the traditional target tracking algorithms do not measure the confidence level of the response. When the confidence level is low, the appearance model of the target is easily disturbed, and the tracking performance is degraded. This paper proposes the Multiple Features and Average Peak Correlation Energy (MFAPCE) tracking algorithm. The MFAPCE tracking algorithm combines deep features with color features and uses average peak correlation energy to measure confidence level. The algorithm uses multiple convolution layers and color histogram features to describe the target appearance. The response is obtained by optimizing the context information using a correlation filter framework. The average peak correlation energy is used to determine the final confidence level of the response and thus determines whether to update the model. The experiments showed that the MFAPCE algorithm improves the tracking performance compared with traditional tracking algorithms. |
doi_str_mv | 10.1007/s11042-019-7216-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174601023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174601023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-97af677519515fd4110e5a2231e9cd867cd054b1928962be498568ee66d201c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FM2iTNURa_YMHL3kO2ndbudtuapML-e7NU0IunTOB532EeQm6B3wPn-iEA8FwwDoZpAYrBGVmA1BnT6Xue5qzgTEsOl-QqhB3noKTIF6RaDd5j52I79LRuu4ieRu_Kfds31HXN4Nv4caBbF7CiCTlMXWzHDmmNLk4eA3V9Rd0XetcgHdHtafmnEXv0zfGaXNSuC3jz8y7J5vlps3pl6_eXt9XjmpUZqMiMdrXSWoKRIOsqTyehdEJkgKasCqXList8C0YURokt5qaQqkBUqhIcymxJ7uba0Q-fE4Zod8Pk-7TRCtC54sBFliiYqdIPIXis7ejbg_NHC9yeXNrZpU0u7cmlhZQRcyYktm_Q_zb_H_oGVfZ3Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174601023</pqid></control><display><type>article</type><title>Correlation filter tracking algorithm based on multiple features and average peak correlation energy</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Sun, Xiyan ; Zhang, Kaidi ; Ji, Yuanfa ; Wang, Shouhua ; Yan, Suqing ; Wu, Sunyong</creator><creatorcontrib>Sun, Xiyan ; Zhang, Kaidi ; Ji, Yuanfa ; Wang, Shouhua ; Yan, Suqing ; Wu, Sunyong</creatorcontrib><description>Since traditional target tracking algorithms employ artificial features, they are not robust enough to describe the appearance of a target. Therefore, it is difficult to apply them to complex scenes. Moreover, the traditional target tracking algorithms do not measure the confidence level of the response. When the confidence level is low, the appearance model of the target is easily disturbed, and the tracking performance is degraded. This paper proposes the Multiple Features and Average Peak Correlation Energy (MFAPCE) tracking algorithm. The MFAPCE tracking algorithm combines deep features with color features and uses average peak correlation energy to measure confidence level. The algorithm uses multiple convolution layers and color histogram features to describe the target appearance. The response is obtained by optimizing the context information using a correlation filter framework. The average peak correlation energy is used to determine the final confidence level of the response and thus determines whether to update the model. The experiments showed that the MFAPCE algorithm improves the tracking performance compared with traditional tracking algorithms.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-7216-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Color ; Computer Communication Networks ; Computer Science ; Confidence intervals ; Convolution ; Correlation analysis ; Data Structures and Information Theory ; Energy measurement ; Histograms ; Multimedia Information Systems ; Performance degradation ; Special Purpose and Application-Based Systems ; Tracking</subject><ispartof>Multimedia tools and applications, 2020-06, Vol.79 (21-22), p.14671-14688</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-97af677519515fd4110e5a2231e9cd867cd054b1928962be498568ee66d201c3</citedby><cites>FETCH-LOGICAL-c316t-97af677519515fd4110e5a2231e9cd867cd054b1928962be498568ee66d201c3</cites><orcidid>0000-0002-1640-9068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2174601023/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2174601023?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,44342,74641</link.rule.ids></links><search><creatorcontrib>Sun, Xiyan</creatorcontrib><creatorcontrib>Zhang, Kaidi</creatorcontrib><creatorcontrib>Ji, Yuanfa</creatorcontrib><creatorcontrib>Wang, Shouhua</creatorcontrib><creatorcontrib>Yan, Suqing</creatorcontrib><creatorcontrib>Wu, Sunyong</creatorcontrib><title>Correlation filter tracking algorithm based on multiple features and average peak correlation energy</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Since traditional target tracking algorithms employ artificial features, they are not robust enough to describe the appearance of a target. Therefore, it is difficult to apply them to complex scenes. Moreover, the traditional target tracking algorithms do not measure the confidence level of the response. When the confidence level is low, the appearance model of the target is easily disturbed, and the tracking performance is degraded. This paper proposes the Multiple Features and Average Peak Correlation Energy (MFAPCE) tracking algorithm. The MFAPCE tracking algorithm combines deep features with color features and uses average peak correlation energy to measure confidence level. The algorithm uses multiple convolution layers and color histogram features to describe the target appearance. The response is obtained by optimizing the context information using a correlation filter framework. The average peak correlation energy is used to determine the final confidence level of the response and thus determines whether to update the model. The experiments showed that the MFAPCE algorithm improves the tracking performance compared with traditional tracking algorithms.</description><subject>Algorithms</subject><subject>Color</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Confidence intervals</subject><subject>Convolution</subject><subject>Correlation analysis</subject><subject>Data Structures and Information Theory</subject><subject>Energy measurement</subject><subject>Histograms</subject><subject>Multimedia Information Systems</subject><subject>Performance degradation</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Tracking</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FM2iTNURa_YMHL3kO2ndbudtuapML-e7NU0IunTOB532EeQm6B3wPn-iEA8FwwDoZpAYrBGVmA1BnT6Xue5qzgTEsOl-QqhB3noKTIF6RaDd5j52I79LRuu4ieRu_Kfds31HXN4Nv4caBbF7CiCTlMXWzHDmmNLk4eA3V9Rd0XetcgHdHtafmnEXv0zfGaXNSuC3jz8y7J5vlps3pl6_eXt9XjmpUZqMiMdrXSWoKRIOsqTyehdEJkgKasCqXList8C0YURokt5qaQqkBUqhIcymxJ7uba0Q-fE4Zod8Pk-7TRCtC54sBFliiYqdIPIXis7ejbg_NHC9yeXNrZpU0u7cmlhZQRcyYktm_Q_zb_H_oGVfZ3Hw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Sun, Xiyan</creator><creator>Zhang, Kaidi</creator><creator>Ji, Yuanfa</creator><creator>Wang, Shouhua</creator><creator>Yan, Suqing</creator><creator>Wu, Sunyong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1640-9068</orcidid></search><sort><creationdate>20200601</creationdate><title>Correlation filter tracking algorithm based on multiple features and average peak correlation energy</title><author>Sun, Xiyan ; Zhang, Kaidi ; Ji, Yuanfa ; Wang, Shouhua ; Yan, Suqing ; Wu, Sunyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-97af677519515fd4110e5a2231e9cd867cd054b1928962be498568ee66d201c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Confidence intervals</topic><topic>Convolution</topic><topic>Correlation analysis</topic><topic>Data Structures and Information Theory</topic><topic>Energy measurement</topic><topic>Histograms</topic><topic>Multimedia Information Systems</topic><topic>Performance degradation</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xiyan</creatorcontrib><creatorcontrib>Zhang, Kaidi</creatorcontrib><creatorcontrib>Ji, Yuanfa</creatorcontrib><creatorcontrib>Wang, Shouhua</creatorcontrib><creatorcontrib>Yan, Suqing</creatorcontrib><creatorcontrib>Wu, Sunyong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xiyan</au><au>Zhang, Kaidi</au><au>Ji, Yuanfa</au><au>Wang, Shouhua</au><au>Yan, Suqing</au><au>Wu, Sunyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation filter tracking algorithm based on multiple features and average peak correlation energy</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>79</volume><issue>21-22</issue><spage>14671</spage><epage>14688</epage><pages>14671-14688</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Since traditional target tracking algorithms employ artificial features, they are not robust enough to describe the appearance of a target. Therefore, it is difficult to apply them to complex scenes. Moreover, the traditional target tracking algorithms do not measure the confidence level of the response. When the confidence level is low, the appearance model of the target is easily disturbed, and the tracking performance is degraded. This paper proposes the Multiple Features and Average Peak Correlation Energy (MFAPCE) tracking algorithm. The MFAPCE tracking algorithm combines deep features with color features and uses average peak correlation energy to measure confidence level. The algorithm uses multiple convolution layers and color histogram features to describe the target appearance. The response is obtained by optimizing the context information using a correlation filter framework. The average peak correlation energy is used to determine the final confidence level of the response and thus determines whether to update the model. The experiments showed that the MFAPCE algorithm improves the tracking performance compared with traditional tracking algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-7216-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1640-9068</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2020-06, Vol.79 (21-22), p.14671-14688 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2174601023 |
source | ABI/INFORM global; Springer Nature |
subjects | Algorithms Color Computer Communication Networks Computer Science Confidence intervals Convolution Correlation analysis Data Structures and Information Theory Energy measurement Histograms Multimedia Information Systems Performance degradation Special Purpose and Application-Based Systems Tracking |
title | Correlation filter tracking algorithm based on multiple features and average peak correlation energy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20filter%20tracking%20algorithm%20based%20on%20multiple%20features%20and%20average%20peak%20correlation%20energy&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Sun,%20Xiyan&rft.date=2020-06-01&rft.volume=79&rft.issue=21-22&rft.spage=14671&rft.epage=14688&rft.pages=14671-14688&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-7216-1&rft_dat=%3Cproquest_cross%3E2174601023%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-97af677519515fd4110e5a2231e9cd867cd054b1928962be498568ee66d201c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174601023&rft_id=info:pmid/&rfr_iscdi=true |