Loading…
The Universal Euler Characteristic of V-Manifolds
The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a V -manifold. We discuss a universal additive topological invariant of V -ma...
Saved in:
Published in: | Functional analysis and its applications 2018-10, Vol.52 (4), p.297-307 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-c071e07c323155b8c42cb284be3d579493508576352744fe29b8d6c2917d60293 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-c071e07c323155b8c42cb284be3d579493508576352744fe29b8d6c2917d60293 |
container_end_page | 307 |
container_issue | 4 |
container_start_page | 297 |
container_title | Functional analysis and its applications |
container_volume | 52 |
creator | Gusein-Zade, S. M. Luengo, I. Melle-Hernández, A. |
description | The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a
V
-manifold. We discuss a universal additive topological invariant of
V
-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a Z-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant CW-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for
V
-manifolds and for cell complexes of the described type. |
doi_str_mv | 10.1007/s10688-018-0239-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174785348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174785348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c071e07c323155b8c42cb284be3d579493508576352744fe29b8d6c2917d60293</originalsourceid><addsrcrecordid>eNp1kE1Lw0AURQdRMFZ_gLuA69H35jtLCdUKFTet2yGZTGxKTOpMIvTfmxLBlYvH3dxzHxxCbhHuEUA_RARlDAWcjvGMHs9IglJzaoSR5yQBQEWZUvySXMW4BwCjUSUENzufbrvm24dYtOlybH1I810RCjf40MShcWlfp-_0teiaum-reE0u6qKN_uY3F2T7tNzkK7p-e37JH9fUcVQDdaDRg3accZSyNE4wVzIjSs8rqTORcQlGasUl00LUnmWlqZRjGepKAcv4gtzNu4fQf40-Dnbfj6GbXlqGWmgjuTBTC-eWC32Mwdf2EJrPIhwtgj2ZsbMZO5mxJzP2ODFsZuLU7T58-Fv-H_oBVcxjxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174785348</pqid></control><display><type>article</type><title>The Universal Euler Characteristic of V-Manifolds</title><source>Springer Nature</source><creator>Gusein-Zade, S. M. ; Luengo, I. ; Melle-Hernández, A.</creator><creatorcontrib>Gusein-Zade, S. M. ; Luengo, I. ; Melle-Hernández, A.</creatorcontrib><description>The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a
V
-manifold. We discuss a universal additive topological invariant of
V
-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a Z-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant CW-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for
V
-manifolds and for cell complexes of the described type.</description><identifier>ISSN: 0016-2663</identifier><identifier>EISSN: 1573-8485</identifier><identifier>DOI: 10.1007/s10688-018-0239-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Functional Analysis ; Invariants ; Isomorphism ; Mathematics ; Mathematics and Statistics</subject><ispartof>Functional analysis and its applications, 2018-10, Vol.52 (4), p.297-307</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c071e07c323155b8c42cb284be3d579493508576352744fe29b8d6c2917d60293</citedby><cites>FETCH-LOGICAL-c316t-c071e07c323155b8c42cb284be3d579493508576352744fe29b8d6c2917d60293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Gusein-Zade, S. M.</creatorcontrib><creatorcontrib>Luengo, I.</creatorcontrib><creatorcontrib>Melle-Hernández, A.</creatorcontrib><title>The Universal Euler Characteristic of V-Manifolds</title><title>Functional analysis and its applications</title><addtitle>Funct Anal Its Appl</addtitle><description>The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a
V
-manifold. We discuss a universal additive topological invariant of
V
-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a Z-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant CW-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for
V
-manifolds and for cell complexes of the described type.</description><subject>Analysis</subject><subject>Functional Analysis</subject><subject>Invariants</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0016-2663</issn><issn>1573-8485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AURQdRMFZ_gLuA69H35jtLCdUKFTet2yGZTGxKTOpMIvTfmxLBlYvH3dxzHxxCbhHuEUA_RARlDAWcjvGMHs9IglJzaoSR5yQBQEWZUvySXMW4BwCjUSUENzufbrvm24dYtOlybH1I810RCjf40MShcWlfp-_0teiaum-reE0u6qKN_uY3F2T7tNzkK7p-e37JH9fUcVQDdaDRg3accZSyNE4wVzIjSs8rqTORcQlGasUl00LUnmWlqZRjGepKAcv4gtzNu4fQf40-Dnbfj6GbXlqGWmgjuTBTC-eWC32Mwdf2EJrPIhwtgj2ZsbMZO5mxJzP2ODFsZuLU7T58-Fv-H_oBVcxjxw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Gusein-Zade, S. M.</creator><creator>Luengo, I.</creator><creator>Melle-Hernández, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>The Universal Euler Characteristic of V-Manifolds</title><author>Gusein-Zade, S. M. ; Luengo, I. ; Melle-Hernández, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c071e07c323155b8c42cb284be3d579493508576352744fe29b8d6c2917d60293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Functional Analysis</topic><topic>Invariants</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gusein-Zade, S. M.</creatorcontrib><creatorcontrib>Luengo, I.</creatorcontrib><creatorcontrib>Melle-Hernández, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Functional analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gusein-Zade, S. M.</au><au>Luengo, I.</au><au>Melle-Hernández, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Universal Euler Characteristic of V-Manifolds</atitle><jtitle>Functional analysis and its applications</jtitle><stitle>Funct Anal Its Appl</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>52</volume><issue>4</issue><spage>297</spage><epage>307</epage><pages>297-307</pages><issn>0016-2663</issn><eissn>1573-8485</eissn><abstract>The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a
V
-manifold. We discuss a universal additive topological invariant of
V
-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a Z-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant CW-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for
V
-manifolds and for cell complexes of the described type.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10688-018-0239-y</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2663 |
ispartof | Functional analysis and its applications, 2018-10, Vol.52 (4), p.297-307 |
issn | 0016-2663 1573-8485 |
language | eng |
recordid | cdi_proquest_journals_2174785348 |
source | Springer Nature |
subjects | Analysis Functional Analysis Invariants Isomorphism Mathematics Mathematics and Statistics |
title | The Universal Euler Characteristic of V-Manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Universal%20Euler%20Characteristic%20of%20V-Manifolds&rft.jtitle=Functional%20analysis%20and%20its%20applications&rft.au=Gusein-Zade,%20S.%20M.&rft.date=2018-10-01&rft.volume=52&rft.issue=4&rft.spage=297&rft.epage=307&rft.pages=297-307&rft.issn=0016-2663&rft.eissn=1573-8485&rft_id=info:doi/10.1007/s10688-018-0239-y&rft_dat=%3Cproquest_cross%3E2174785348%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c071e07c323155b8c42cb284be3d579493508576352744fe29b8d6c2917d60293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174785348&rft_id=info:pmid/&rfr_iscdi=true |