Loading…

Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes

Antimony selenide and its carbon composite were synthesized through a mechanochemical process and investigated as anode materials for sodium-ion secondary batteries. X-ray diffraction (XRD) with rietveld refinement and transmission electron microscopy (TEM) analyses confirm that Sb 2 Se 3 were compo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied electrochemistry 2019-02, Vol.49 (2), p.207-216
Main Authors: Choi, Jeong-Hee, Lee, Min-Ho, Choi, Hae-Young, Park, Cheol-Min, Lee, Sang-Min, Choi, Jin-Hyeok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3
cites cdi_FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3
container_end_page 216
container_issue 2
container_start_page 207
container_title Journal of applied electrochemistry
container_volume 49
creator Choi, Jeong-Hee
Lee, Min-Ho
Choi, Hae-Young
Park, Cheol-Min
Lee, Sang-Min
Choi, Jin-Hyeok
description Antimony selenide and its carbon composite were synthesized through a mechanochemical process and investigated as anode materials for sodium-ion secondary batteries. X-ray diffraction (XRD) with rietveld refinement and transmission electron microscopy (TEM) analyses confirm that Sb 2 Se 3 were composed of agglomerated highly crystalline nanocrystallites and the Sb 2 Se 3 /C composite consisted of nanocrystalline Sb 2 Se 3 dispersed homogeneously throughout an amorphized carbon matrix. The initial Coulombic efficiency, rate capability, and cycle performance of the Sb 2 Se 3 /C composite were superior to those of Sb, or Sb 2 Se 3 . The Sb 2 Se 3 /C composite, in particular, showed excellent cycle stability, with 98.2% of initial capacity at 200 mA g −1 after 200 cycles. Based on the reaction potentials, ex situ XRD patterns and ex situ HR-TEM analysis of the Sb 2 Se 3 /C composite electrode revealed the structural changes which occurred reversibly within the Sb 2 Se 3 /C composite by conversion and recombination reaction during sodiation and desodiation process. Furthermore, XPS analysis study was carried out for identifying the surface films formed on both the electrodes and their effects on the performances. Graphical abstract
doi_str_mv 10.1007/s10800-018-1267-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2175057035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175057035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hM9iPZoxQ_CgUvCt5CNsm2Kd2kJlth_71bV_HkaQ7zPu8wDyHXCLcIwO8SggCggIIiqzhlJ2SGJWdUiFyckhkAQypqfD8nFyltAaBmVTEjw9J_2tS7tepd8FloM7uzuo9Bb2zntNpl0Sr9veus3ijvUpe1IWbK964LfsjSCHhnbOaVDzp0-5Bcb78zKRh36OgRblTf2zj8thubLslZq3bJXv3MOXl7fHhdPNPVy9Nycb-iumDYU1WiaqpcKQBVazQAbVGJljc1LxpWCOAGURvGRCFszUssrYESTMFEU7VG5XNyM_XuY_g4jL_KbThEP56UDHkJJYe8HFM4pXQMKUXbyn10nYqDRJBHw3IyLEfD8mhYspFhE5PGrF_b-Nf8P_QFtG2BGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175057035</pqid></control><display><type>article</type><title>Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes</title><source>Springer Nature</source><creator>Choi, Jeong-Hee ; Lee, Min-Ho ; Choi, Hae-Young ; Park, Cheol-Min ; Lee, Sang-Min ; Choi, Jin-Hyeok</creator><creatorcontrib>Choi, Jeong-Hee ; Lee, Min-Ho ; Choi, Hae-Young ; Park, Cheol-Min ; Lee, Sang-Min ; Choi, Jin-Hyeok</creatorcontrib><description>Antimony selenide and its carbon composite were synthesized through a mechanochemical process and investigated as anode materials for sodium-ion secondary batteries. X-ray diffraction (XRD) with rietveld refinement and transmission electron microscopy (TEM) analyses confirm that Sb 2 Se 3 were composed of agglomerated highly crystalline nanocrystallites and the Sb 2 Se 3 /C composite consisted of nanocrystalline Sb 2 Se 3 dispersed homogeneously throughout an amorphized carbon matrix. The initial Coulombic efficiency, rate capability, and cycle performance of the Sb 2 Se 3 /C composite were superior to those of Sb, or Sb 2 Se 3 . The Sb 2 Se 3 /C composite, in particular, showed excellent cycle stability, with 98.2% of initial capacity at 200 mA g −1 after 200 cycles. Based on the reaction potentials, ex situ XRD patterns and ex situ HR-TEM analysis of the Sb 2 Se 3 /C composite electrode revealed the structural changes which occurred reversibly within the Sb 2 Se 3 /C composite by conversion and recombination reaction during sodiation and desodiation process. Furthermore, XPS analysis study was carried out for identifying the surface films formed on both the electrodes and their effects on the performances. Graphical abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-018-1267-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amorphization ; Anodes ; Antimony ; Antimony compounds ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Crystals ; Electrochemistry ; Electrode materials ; Electrodes ; Industrial Chemistry/Chemical Engineering ; Nanocomposites ; Nanocrystals ; Physical Chemistry ; Reaction mechanisms ; Rechargeable batteries ; Recombination reactions ; Research Article ; Selenides ; Sodium-ion batteries ; Storage batteries ; Transmission electron microscopy ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Journal of applied electrochemistry, 2019-02, Vol.49 (2), p.207-216</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3</citedby><cites>FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3</cites><orcidid>0000-0001-8081-1732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Choi, Jeong-Hee</creatorcontrib><creatorcontrib>Lee, Min-Ho</creatorcontrib><creatorcontrib>Choi, Hae-Young</creatorcontrib><creatorcontrib>Park, Cheol-Min</creatorcontrib><creatorcontrib>Lee, Sang-Min</creatorcontrib><creatorcontrib>Choi, Jin-Hyeok</creatorcontrib><title>Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>Antimony selenide and its carbon composite were synthesized through a mechanochemical process and investigated as anode materials for sodium-ion secondary batteries. X-ray diffraction (XRD) with rietveld refinement and transmission electron microscopy (TEM) analyses confirm that Sb 2 Se 3 were composed of agglomerated highly crystalline nanocrystallites and the Sb 2 Se 3 /C composite consisted of nanocrystalline Sb 2 Se 3 dispersed homogeneously throughout an amorphized carbon matrix. The initial Coulombic efficiency, rate capability, and cycle performance of the Sb 2 Se 3 /C composite were superior to those of Sb, or Sb 2 Se 3 . The Sb 2 Se 3 /C composite, in particular, showed excellent cycle stability, with 98.2% of initial capacity at 200 mA g −1 after 200 cycles. Based on the reaction potentials, ex situ XRD patterns and ex situ HR-TEM analysis of the Sb 2 Se 3 /C composite electrode revealed the structural changes which occurred reversibly within the Sb 2 Se 3 /C composite by conversion and recombination reaction during sodiation and desodiation process. Furthermore, XPS analysis study was carried out for identifying the surface films formed on both the electrodes and their effects on the performances. Graphical abstract</description><subject>Amorphization</subject><subject>Anodes</subject><subject>Antimony</subject><subject>Antimony compounds</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystals</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Physical Chemistry</subject><subject>Reaction mechanisms</subject><subject>Rechargeable batteries</subject><subject>Recombination reactions</subject><subject>Research Article</subject><subject>Selenides</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hM9iPZoxQ_CgUvCt5CNsm2Kd2kJlth_71bV_HkaQ7zPu8wDyHXCLcIwO8SggCggIIiqzhlJ2SGJWdUiFyckhkAQypqfD8nFyltAaBmVTEjw9J_2tS7tepd8FloM7uzuo9Bb2zntNpl0Sr9veus3ijvUpe1IWbK964LfsjSCHhnbOaVDzp0-5Bcb78zKRh36OgRblTf2zj8thubLslZq3bJXv3MOXl7fHhdPNPVy9Nycb-iumDYU1WiaqpcKQBVazQAbVGJljc1LxpWCOAGURvGRCFszUssrYESTMFEU7VG5XNyM_XuY_g4jL_KbThEP56UDHkJJYe8HFM4pXQMKUXbyn10nYqDRJBHw3IyLEfD8mhYspFhE5PGrF_b-Nf8P_QFtG2BGA</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Choi, Jeong-Hee</creator><creator>Lee, Min-Ho</creator><creator>Choi, Hae-Young</creator><creator>Park, Cheol-Min</creator><creator>Lee, Sang-Min</creator><creator>Choi, Jin-Hyeok</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8081-1732</orcidid></search><sort><creationdate>20190215</creationdate><title>Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes</title><author>Choi, Jeong-Hee ; Lee, Min-Ho ; Choi, Hae-Young ; Park, Cheol-Min ; Lee, Sang-Min ; Choi, Jin-Hyeok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amorphization</topic><topic>Anodes</topic><topic>Antimony</topic><topic>Antimony compounds</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystals</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Physical Chemistry</topic><topic>Reaction mechanisms</topic><topic>Rechargeable batteries</topic><topic>Recombination reactions</topic><topic>Research Article</topic><topic>Selenides</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jeong-Hee</creatorcontrib><creatorcontrib>Lee, Min-Ho</creatorcontrib><creatorcontrib>Choi, Hae-Young</creatorcontrib><creatorcontrib>Park, Cheol-Min</creatorcontrib><creatorcontrib>Lee, Sang-Min</creatorcontrib><creatorcontrib>Choi, Jin-Hyeok</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jeong-Hee</au><au>Lee, Min-Ho</au><au>Choi, Hae-Young</au><au>Park, Cheol-Min</au><au>Lee, Sang-Min</au><au>Choi, Jin-Hyeok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>49</volume><issue>2</issue><spage>207</spage><epage>216</epage><pages>207-216</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>Antimony selenide and its carbon composite were synthesized through a mechanochemical process and investigated as anode materials for sodium-ion secondary batteries. X-ray diffraction (XRD) with rietveld refinement and transmission electron microscopy (TEM) analyses confirm that Sb 2 Se 3 were composed of agglomerated highly crystalline nanocrystallites and the Sb 2 Se 3 /C composite consisted of nanocrystalline Sb 2 Se 3 dispersed homogeneously throughout an amorphized carbon matrix. The initial Coulombic efficiency, rate capability, and cycle performance of the Sb 2 Se 3 /C composite were superior to those of Sb, or Sb 2 Se 3 . The Sb 2 Se 3 /C composite, in particular, showed excellent cycle stability, with 98.2% of initial capacity at 200 mA g −1 after 200 cycles. Based on the reaction potentials, ex situ XRD patterns and ex situ HR-TEM analysis of the Sb 2 Se 3 /C composite electrode revealed the structural changes which occurred reversibly within the Sb 2 Se 3 /C composite by conversion and recombination reaction during sodiation and desodiation process. Furthermore, XPS analysis study was carried out for identifying the surface films formed on both the electrodes and their effects on the performances. Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-018-1267-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8081-1732</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-891X
ispartof Journal of applied electrochemistry, 2019-02, Vol.49 (2), p.207-216
issn 0021-891X
1572-8838
language eng
recordid cdi_proquest_journals_2175057035
source Springer Nature
subjects Amorphization
Anodes
Antimony
Antimony compounds
Chemical synthesis
Chemistry
Chemistry and Materials Science
Crystals
Electrochemistry
Electrode materials
Electrodes
Industrial Chemistry/Chemical Engineering
Nanocomposites
Nanocrystals
Physical Chemistry
Reaction mechanisms
Rechargeable batteries
Recombination reactions
Research Article
Selenides
Sodium-ion batteries
Storage batteries
Transmission electron microscopy
X ray photoelectron spectroscopy
X-ray diffraction
title Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20electrochemical%20reaction%20mechanism%20for%20antimony%20selenide%20nanocomposite%20for%20sodium-ion%20battery%20electrodes&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Choi,%20Jeong-Hee&rft.date=2019-02-15&rft.volume=49&rft.issue=2&rft.spage=207&rft.epage=216&rft.pages=207-216&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-018-1267-2&rft_dat=%3Cproquest_cross%3E2175057035%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2175057035&rft_id=info:pmid/&rfr_iscdi=true