Loading…
Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes
Antimony selenide and its carbon composite were synthesized through a mechanochemical process and investigated as anode materials for sodium-ion secondary batteries. X-ray diffraction (XRD) with rietveld refinement and transmission electron microscopy (TEM) analyses confirm that Sb 2 Se 3 were compo...
Saved in:
Published in: | Journal of applied electrochemistry 2019-02, Vol.49 (2), p.207-216 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3 |
container_end_page | 216 |
container_issue | 2 |
container_start_page | 207 |
container_title | Journal of applied electrochemistry |
container_volume | 49 |
creator | Choi, Jeong-Hee Lee, Min-Ho Choi, Hae-Young Park, Cheol-Min Lee, Sang-Min Choi, Jin-Hyeok |
description | Antimony selenide and its carbon composite were synthesized through a mechanochemical process and investigated as anode materials for sodium-ion secondary batteries. X-ray diffraction (XRD) with rietveld refinement and transmission electron microscopy (TEM) analyses confirm that Sb
2
Se
3
were composed of agglomerated highly crystalline nanocrystallites and the Sb
2
Se
3
/C composite consisted of nanocrystalline Sb
2
Se
3
dispersed homogeneously throughout an amorphized carbon matrix. The initial Coulombic efficiency, rate capability, and cycle performance of the Sb
2
Se
3
/C composite were superior to those of Sb, or Sb
2
Se
3
. The Sb
2
Se
3
/C composite, in particular, showed excellent cycle stability, with 98.2% of initial capacity at 200 mA g
−1
after 200 cycles. Based on the reaction potentials, ex situ XRD patterns and ex situ HR-TEM analysis of the Sb
2
Se
3
/C composite electrode revealed the structural changes which occurred reversibly within the Sb
2
Se
3
/C composite by conversion and recombination reaction during sodiation and desodiation process. Furthermore, XPS analysis study was carried out for identifying the surface films formed on both the electrodes and their effects on the performances.
Graphical abstract |
doi_str_mv | 10.1007/s10800-018-1267-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2175057035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175057035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hM9iPZoxQ_CgUvCt5CNsm2Kd2kJlth_71bV_HkaQ7zPu8wDyHXCLcIwO8SggCggIIiqzhlJ2SGJWdUiFyckhkAQypqfD8nFyltAaBmVTEjw9J_2tS7tepd8FloM7uzuo9Bb2zntNpl0Sr9veus3ijvUpe1IWbK964LfsjSCHhnbOaVDzp0-5Bcb78zKRh36OgRblTf2zj8thubLslZq3bJXv3MOXl7fHhdPNPVy9Nycb-iumDYU1WiaqpcKQBVazQAbVGJljc1LxpWCOAGURvGRCFszUssrYESTMFEU7VG5XNyM_XuY_g4jL_KbThEP56UDHkJJYe8HFM4pXQMKUXbyn10nYqDRJBHw3IyLEfD8mhYspFhE5PGrF_b-Nf8P_QFtG2BGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175057035</pqid></control><display><type>article</type><title>Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes</title><source>Springer Nature</source><creator>Choi, Jeong-Hee ; Lee, Min-Ho ; Choi, Hae-Young ; Park, Cheol-Min ; Lee, Sang-Min ; Choi, Jin-Hyeok</creator><creatorcontrib>Choi, Jeong-Hee ; Lee, Min-Ho ; Choi, Hae-Young ; Park, Cheol-Min ; Lee, Sang-Min ; Choi, Jin-Hyeok</creatorcontrib><description>Antimony selenide and its carbon composite were synthesized through a mechanochemical process and investigated as anode materials for sodium-ion secondary batteries. X-ray diffraction (XRD) with rietveld refinement and transmission electron microscopy (TEM) analyses confirm that Sb
2
Se
3
were composed of agglomerated highly crystalline nanocrystallites and the Sb
2
Se
3
/C composite consisted of nanocrystalline Sb
2
Se
3
dispersed homogeneously throughout an amorphized carbon matrix. The initial Coulombic efficiency, rate capability, and cycle performance of the Sb
2
Se
3
/C composite were superior to those of Sb, or Sb
2
Se
3
. The Sb
2
Se
3
/C composite, in particular, showed excellent cycle stability, with 98.2% of initial capacity at 200 mA g
−1
after 200 cycles. Based on the reaction potentials, ex situ XRD patterns and ex situ HR-TEM analysis of the Sb
2
Se
3
/C composite electrode revealed the structural changes which occurred reversibly within the Sb
2
Se
3
/C composite by conversion and recombination reaction during sodiation and desodiation process. Furthermore, XPS analysis study was carried out for identifying the surface films formed on both the electrodes and their effects on the performances.
Graphical abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-018-1267-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amorphization ; Anodes ; Antimony ; Antimony compounds ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Crystals ; Electrochemistry ; Electrode materials ; Electrodes ; Industrial Chemistry/Chemical Engineering ; Nanocomposites ; Nanocrystals ; Physical Chemistry ; Reaction mechanisms ; Rechargeable batteries ; Recombination reactions ; Research Article ; Selenides ; Sodium-ion batteries ; Storage batteries ; Transmission electron microscopy ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Journal of applied electrochemistry, 2019-02, Vol.49 (2), p.207-216</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3</citedby><cites>FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3</cites><orcidid>0000-0001-8081-1732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Choi, Jeong-Hee</creatorcontrib><creatorcontrib>Lee, Min-Ho</creatorcontrib><creatorcontrib>Choi, Hae-Young</creatorcontrib><creatorcontrib>Park, Cheol-Min</creatorcontrib><creatorcontrib>Lee, Sang-Min</creatorcontrib><creatorcontrib>Choi, Jin-Hyeok</creatorcontrib><title>Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>Antimony selenide and its carbon composite were synthesized through a mechanochemical process and investigated as anode materials for sodium-ion secondary batteries. X-ray diffraction (XRD) with rietveld refinement and transmission electron microscopy (TEM) analyses confirm that Sb
2
Se
3
were composed of agglomerated highly crystalline nanocrystallites and the Sb
2
Se
3
/C composite consisted of nanocrystalline Sb
2
Se
3
dispersed homogeneously throughout an amorphized carbon matrix. The initial Coulombic efficiency, rate capability, and cycle performance of the Sb
2
Se
3
/C composite were superior to those of Sb, or Sb
2
Se
3
. The Sb
2
Se
3
/C composite, in particular, showed excellent cycle stability, with 98.2% of initial capacity at 200 mA g
−1
after 200 cycles. Based on the reaction potentials, ex situ XRD patterns and ex situ HR-TEM analysis of the Sb
2
Se
3
/C composite electrode revealed the structural changes which occurred reversibly within the Sb
2
Se
3
/C composite by conversion and recombination reaction during sodiation and desodiation process. Furthermore, XPS analysis study was carried out for identifying the surface films formed on both the electrodes and their effects on the performances.
Graphical abstract</description><subject>Amorphization</subject><subject>Anodes</subject><subject>Antimony</subject><subject>Antimony compounds</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystals</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Physical Chemistry</subject><subject>Reaction mechanisms</subject><subject>Rechargeable batteries</subject><subject>Recombination reactions</subject><subject>Research Article</subject><subject>Selenides</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hM9iPZoxQ_CgUvCt5CNsm2Kd2kJlth_71bV_HkaQ7zPu8wDyHXCLcIwO8SggCggIIiqzhlJ2SGJWdUiFyckhkAQypqfD8nFyltAaBmVTEjw9J_2tS7tepd8FloM7uzuo9Bb2zntNpl0Sr9veus3ijvUpe1IWbK964LfsjSCHhnbOaVDzp0-5Bcb78zKRh36OgRblTf2zj8thubLslZq3bJXv3MOXl7fHhdPNPVy9Nycb-iumDYU1WiaqpcKQBVazQAbVGJljc1LxpWCOAGURvGRCFszUssrYESTMFEU7VG5XNyM_XuY_g4jL_KbThEP56UDHkJJYe8HFM4pXQMKUXbyn10nYqDRJBHw3IyLEfD8mhYspFhE5PGrF_b-Nf8P_QFtG2BGA</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Choi, Jeong-Hee</creator><creator>Lee, Min-Ho</creator><creator>Choi, Hae-Young</creator><creator>Park, Cheol-Min</creator><creator>Lee, Sang-Min</creator><creator>Choi, Jin-Hyeok</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8081-1732</orcidid></search><sort><creationdate>20190215</creationdate><title>Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes</title><author>Choi, Jeong-Hee ; Lee, Min-Ho ; Choi, Hae-Young ; Park, Cheol-Min ; Lee, Sang-Min ; Choi, Jin-Hyeok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amorphization</topic><topic>Anodes</topic><topic>Antimony</topic><topic>Antimony compounds</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystals</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Physical Chemistry</topic><topic>Reaction mechanisms</topic><topic>Rechargeable batteries</topic><topic>Recombination reactions</topic><topic>Research Article</topic><topic>Selenides</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jeong-Hee</creatorcontrib><creatorcontrib>Lee, Min-Ho</creatorcontrib><creatorcontrib>Choi, Hae-Young</creatorcontrib><creatorcontrib>Park, Cheol-Min</creatorcontrib><creatorcontrib>Lee, Sang-Min</creatorcontrib><creatorcontrib>Choi, Jin-Hyeok</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jeong-Hee</au><au>Lee, Min-Ho</au><au>Choi, Hae-Young</au><au>Park, Cheol-Min</au><au>Lee, Sang-Min</au><au>Choi, Jin-Hyeok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>49</volume><issue>2</issue><spage>207</spage><epage>216</epage><pages>207-216</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>Antimony selenide and its carbon composite were synthesized through a mechanochemical process and investigated as anode materials for sodium-ion secondary batteries. X-ray diffraction (XRD) with rietveld refinement and transmission electron microscopy (TEM) analyses confirm that Sb
2
Se
3
were composed of agglomerated highly crystalline nanocrystallites and the Sb
2
Se
3
/C composite consisted of nanocrystalline Sb
2
Se
3
dispersed homogeneously throughout an amorphized carbon matrix. The initial Coulombic efficiency, rate capability, and cycle performance of the Sb
2
Se
3
/C composite were superior to those of Sb, or Sb
2
Se
3
. The Sb
2
Se
3
/C composite, in particular, showed excellent cycle stability, with 98.2% of initial capacity at 200 mA g
−1
after 200 cycles. Based on the reaction potentials, ex situ XRD patterns and ex situ HR-TEM analysis of the Sb
2
Se
3
/C composite electrode revealed the structural changes which occurred reversibly within the Sb
2
Se
3
/C composite by conversion and recombination reaction during sodiation and desodiation process. Furthermore, XPS analysis study was carried out for identifying the surface films formed on both the electrodes and their effects on the performances.
Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-018-1267-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8081-1732</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-891X |
ispartof | Journal of applied electrochemistry, 2019-02, Vol.49 (2), p.207-216 |
issn | 0021-891X 1572-8838 |
language | eng |
recordid | cdi_proquest_journals_2175057035 |
source | Springer Nature |
subjects | Amorphization Anodes Antimony Antimony compounds Chemical synthesis Chemistry Chemistry and Materials Science Crystals Electrochemistry Electrode materials Electrodes Industrial Chemistry/Chemical Engineering Nanocomposites Nanocrystals Physical Chemistry Reaction mechanisms Rechargeable batteries Recombination reactions Research Article Selenides Sodium-ion batteries Storage batteries Transmission electron microscopy X ray photoelectron spectroscopy X-ray diffraction |
title | Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20electrochemical%20reaction%20mechanism%20for%20antimony%20selenide%20nanocomposite%20for%20sodium-ion%20battery%20electrodes&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Choi,%20Jeong-Hee&rft.date=2019-02-15&rft.volume=49&rft.issue=2&rft.spage=207&rft.epage=216&rft.pages=207-216&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-018-1267-2&rft_dat=%3Cproquest_cross%3E2175057035%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-a51ab63aa00a9c1d00f468f7b974b24807d11cd22848e97515ed050d428b6fda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2175057035&rft_id=info:pmid/&rfr_iscdi=true |