Loading…

Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity

In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macro...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2019-02, Vol.59 (2), p.254-263
Main Authors: Bagri, Laxmi Prasad, Saini, Rajesh K., Kumar Bajpai, Anil, Choubey, Rashmi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macroporous cryogel nanocomposites were characterized by Infra‐red spectroscopy (FTIR), environmental scanning electron microscopy (ESEM), and particle size and charge analysis. The amylase induced enzymatic degradation of nanocomposites was studied gravimetrically in phosphate buffer saline (PBS) and effect of various parameters like chemical composition of the nanocomposite, number of freeze‐thaw cycles, and enzyme activity were assessed on the extent of degradation of the nanocomposite. The influence of chemical composition and experimental conditions like the number of freeze thaw cycles was studied on the elastic modulii of the cryogels. The in vitro cytotoxicity and antibacterial activity of nanocomposites was also evaluated against L‐529 fibroblast cells and gram positive and gram negative bacteria, respectively. POLYM. ENG. SCI., 59:254–263, 2019. © 2018 Society of Plastics Engineers
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.24899