Loading…

Design, 3D printing and validation of a novel low‐cost high‐capacity sitting‐drop bridge for protein crystallization

Sitting‐drop protein crystallization is not used as commonly as the hanging‐drop method for crystal optimization owing to the limitations of commercially available sitting‐drop bridges, particularly when they are used in conjunction with 24‐well crystallization plates. The commercially available sit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied crystallography 2019-02, Vol.52 (1), p.171-174
Main Authors: Talapatra, Sandeep K., Penny, Matthew R., Hilton, Stephen T., Kozielski, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2966-763c2e91b3d0568131e79d2e24c703ddf1bf2c49394a47afc59b2dc4c38cc97e3
cites cdi_FETCH-LOGICAL-c2966-763c2e91b3d0568131e79d2e24c703ddf1bf2c49394a47afc59b2dc4c38cc97e3
container_end_page 174
container_issue 1
container_start_page 171
container_title Journal of applied crystallography
container_volume 52
creator Talapatra, Sandeep K.
Penny, Matthew R.
Hilton, Stephen T.
Kozielski, Frank
description Sitting‐drop protein crystallization is not used as commonly as the hanging‐drop method for crystal optimization owing to the limitations of commercially available sitting‐drop bridges, particularly when they are used in conjunction with 24‐well crystallization plates. The commercially available sitting‐drop bridge, containing space for only a single drop, restricts their wider use. Proteins that preferentially crystallize under sitting‐drop conditions therefore require more work, time and resources for their optimization. In response to these limitations, and using 3D printing, a new sitting‐drop bridge has been designed and developed, where five crystallization drops can be placed simultaneously in each well of a 24‐well crystallization plate. This significantly simplifies the process and increases the potential of sitting drops in crystal optimization, reducing costs and hence overcoming the limitations of current approaches. Optimization of protein crystals using the vapour‐diffusion sitting‐drop method is time consuming, labour intensive and costly. This article presents the concept, design and evaluation of a novel low‐cost and high‐capacity sitting‐drop bridge. It is hoped that this will help to remove the present bottleneck in crystal optimization and streamline the overall process to obtain high‐quality crystals.
doi_str_mv 10.1107/S1600576718017545
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2175837511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175837511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2966-763c2e91b3d0568131e79d2e24c703ddf1bf2c49394a47afc59b2dc4c38cc97e3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEqXwAewssaXgR2LHS9TyKKqExGMdObaTugp2sdNW6YpP4Bv5EhzKAokFqxld3XtndJLkFMELhCC7fEIUwoxRhnKIWJZme8mgl0a9tv9rP0yOQlhAiCjDeJBsJzqY2p4DMgFLb2xrbA2EVWAtGqNEa5wFrgICWLfWDWjc5vP9Q7rQgrmp5_0ulkKatgPBtH04Ssq7JSi9UbUGlfOx17XaWCB9F1rRNGb73XucHFSiCfrkZw6Tl5vr5_HdaPZwOx1fzUYSc0pHjBKJNUclUTCjOSJIM66wxqlkkChVobLCMuWEpyJlopIZL7GSqSS5lJxpMkzOdr3xj7eVDm2xcCtv48kCR1Q5YRlC0YV2LuldCF5XRcTxKnxXIFj0iIs_iGOG7zIb0-ju_0BxP37E19MMEkq-ALt4gvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175837511</pqid></control><display><type>article</type><title>Design, 3D printing and validation of a novel low‐cost high‐capacity sitting‐drop bridge for protein crystallization</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Talapatra, Sandeep K. ; Penny, Matthew R. ; Hilton, Stephen T. ; Kozielski, Frank</creator><creatorcontrib>Talapatra, Sandeep K. ; Penny, Matthew R. ; Hilton, Stephen T. ; Kozielski, Frank</creatorcontrib><description>Sitting‐drop protein crystallization is not used as commonly as the hanging‐drop method for crystal optimization owing to the limitations of commercially available sitting‐drop bridges, particularly when they are used in conjunction with 24‐well crystallization plates. The commercially available sitting‐drop bridge, containing space for only a single drop, restricts their wider use. Proteins that preferentially crystallize under sitting‐drop conditions therefore require more work, time and resources for their optimization. In response to these limitations, and using 3D printing, a new sitting‐drop bridge has been designed and developed, where five crystallization drops can be placed simultaneously in each well of a 24‐well crystallization plate. This significantly simplifies the process and increases the potential of sitting drops in crystal optimization, reducing costs and hence overcoming the limitations of current approaches. Optimization of protein crystals using the vapour‐diffusion sitting‐drop method is time consuming, labour intensive and costly. This article presents the concept, design and evaluation of a novel low‐cost and high‐capacity sitting‐drop bridge. It is hoped that this will help to remove the present bottleneck in crystal optimization and streamline the overall process to obtain high‐quality crystals.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576718017545</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>3-D printers ; 3D printing ; Crystallization ; hanging‐drop crystallization ; microbridges ; Optimization ; protein crystallization ; Proteins ; sitting‐drop crystallization ; Three dimensional printing ; vapour‐diffusion crystallization</subject><ispartof>Journal of applied crystallography, 2019-02, Vol.52 (1), p.171-174</ispartof><rights>International Union of Crystallography, 2019</rights><rights>Copyright Blackwell Publishing Ltd. Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2966-763c2e91b3d0568131e79d2e24c703ddf1bf2c49394a47afc59b2dc4c38cc97e3</citedby><cites>FETCH-LOGICAL-c2966-763c2e91b3d0568131e79d2e24c703ddf1bf2c49394a47afc59b2dc4c38cc97e3</cites><orcidid>0000-0001-7506-5640 ; 0000-0001-8782-4499 ; 0000-0002-5474-0114 ; 0000-0001-6096-9102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Talapatra, Sandeep K.</creatorcontrib><creatorcontrib>Penny, Matthew R.</creatorcontrib><creatorcontrib>Hilton, Stephen T.</creatorcontrib><creatorcontrib>Kozielski, Frank</creatorcontrib><title>Design, 3D printing and validation of a novel low‐cost high‐capacity sitting‐drop bridge for protein crystallization</title><title>Journal of applied crystallography</title><description>Sitting‐drop protein crystallization is not used as commonly as the hanging‐drop method for crystal optimization owing to the limitations of commercially available sitting‐drop bridges, particularly when they are used in conjunction with 24‐well crystallization plates. The commercially available sitting‐drop bridge, containing space for only a single drop, restricts their wider use. Proteins that preferentially crystallize under sitting‐drop conditions therefore require more work, time and resources for their optimization. In response to these limitations, and using 3D printing, a new sitting‐drop bridge has been designed and developed, where five crystallization drops can be placed simultaneously in each well of a 24‐well crystallization plate. This significantly simplifies the process and increases the potential of sitting drops in crystal optimization, reducing costs and hence overcoming the limitations of current approaches. Optimization of protein crystals using the vapour‐diffusion sitting‐drop method is time consuming, labour intensive and costly. This article presents the concept, design and evaluation of a novel low‐cost and high‐capacity sitting‐drop bridge. It is hoped that this will help to remove the present bottleneck in crystal optimization and streamline the overall process to obtain high‐quality crystals.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Crystallization</subject><subject>hanging‐drop crystallization</subject><subject>microbridges</subject><subject>Optimization</subject><subject>protein crystallization</subject><subject>Proteins</subject><subject>sitting‐drop crystallization</subject><subject>Three dimensional printing</subject><subject>vapour‐diffusion crystallization</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEEqXwAewssaXgR2LHS9TyKKqExGMdObaTugp2sdNW6YpP4Bv5EhzKAokFqxld3XtndJLkFMELhCC7fEIUwoxRhnKIWJZme8mgl0a9tv9rP0yOQlhAiCjDeJBsJzqY2p4DMgFLb2xrbA2EVWAtGqNEa5wFrgICWLfWDWjc5vP9Q7rQgrmp5_0ulkKatgPBtH04Ssq7JSi9UbUGlfOx17XaWCB9F1rRNGb73XucHFSiCfrkZw6Tl5vr5_HdaPZwOx1fzUYSc0pHjBKJNUclUTCjOSJIM66wxqlkkChVobLCMuWEpyJlopIZL7GSqSS5lJxpMkzOdr3xj7eVDm2xcCtv48kCR1Q5YRlC0YV2LuldCF5XRcTxKnxXIFj0iIs_iGOG7zIb0-ju_0BxP37E19MMEkq-ALt4gvo</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Talapatra, Sandeep K.</creator><creator>Penny, Matthew R.</creator><creator>Hilton, Stephen T.</creator><creator>Kozielski, Frank</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7506-5640</orcidid><orcidid>https://orcid.org/0000-0001-8782-4499</orcidid><orcidid>https://orcid.org/0000-0002-5474-0114</orcidid><orcidid>https://orcid.org/0000-0001-6096-9102</orcidid></search><sort><creationdate>201902</creationdate><title>Design, 3D printing and validation of a novel low‐cost high‐capacity sitting‐drop bridge for protein crystallization</title><author>Talapatra, Sandeep K. ; Penny, Matthew R. ; Hilton, Stephen T. ; Kozielski, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2966-763c2e91b3d0568131e79d2e24c703ddf1bf2c49394a47afc59b2dc4c38cc97e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Crystallization</topic><topic>hanging‐drop crystallization</topic><topic>microbridges</topic><topic>Optimization</topic><topic>protein crystallization</topic><topic>Proteins</topic><topic>sitting‐drop crystallization</topic><topic>Three dimensional printing</topic><topic>vapour‐diffusion crystallization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talapatra, Sandeep K.</creatorcontrib><creatorcontrib>Penny, Matthew R.</creatorcontrib><creatorcontrib>Hilton, Stephen T.</creatorcontrib><creatorcontrib>Kozielski, Frank</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talapatra, Sandeep K.</au><au>Penny, Matthew R.</au><au>Hilton, Stephen T.</au><au>Kozielski, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, 3D printing and validation of a novel low‐cost high‐capacity sitting‐drop bridge for protein crystallization</atitle><jtitle>Journal of applied crystallography</jtitle><date>2019-02</date><risdate>2019</risdate><volume>52</volume><issue>1</issue><spage>171</spage><epage>174</epage><pages>171-174</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Sitting‐drop protein crystallization is not used as commonly as the hanging‐drop method for crystal optimization owing to the limitations of commercially available sitting‐drop bridges, particularly when they are used in conjunction with 24‐well crystallization plates. The commercially available sitting‐drop bridge, containing space for only a single drop, restricts their wider use. Proteins that preferentially crystallize under sitting‐drop conditions therefore require more work, time and resources for their optimization. In response to these limitations, and using 3D printing, a new sitting‐drop bridge has been designed and developed, where five crystallization drops can be placed simultaneously in each well of a 24‐well crystallization plate. This significantly simplifies the process and increases the potential of sitting drops in crystal optimization, reducing costs and hence overcoming the limitations of current approaches. Optimization of protein crystals using the vapour‐diffusion sitting‐drop method is time consuming, labour intensive and costly. This article presents the concept, design and evaluation of a novel low‐cost and high‐capacity sitting‐drop bridge. It is hoped that this will help to remove the present bottleneck in crystal optimization and streamline the overall process to obtain high‐quality crystals.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S1600576718017545</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-7506-5640</orcidid><orcidid>https://orcid.org/0000-0001-8782-4499</orcidid><orcidid>https://orcid.org/0000-0002-5474-0114</orcidid><orcidid>https://orcid.org/0000-0001-6096-9102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2019-02, Vol.52 (1), p.171-174
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_proquest_journals_2175837511
source Wiley-Blackwell Read & Publish Collection
subjects 3-D printers
3D printing
Crystallization
hanging‐drop crystallization
microbridges
Optimization
protein crystallization
Proteins
sitting‐drop crystallization
Three dimensional printing
vapour‐diffusion crystallization
title Design, 3D printing and validation of a novel low‐cost high‐capacity sitting‐drop bridge for protein crystallization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%203D%20printing%20and%20validation%20of%20a%20novel%20low%E2%80%90cost%20high%E2%80%90capacity%20sitting%E2%80%90drop%20bridge%20for%20protein%20crystallization&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Talapatra,%20Sandeep%20K.&rft.date=2019-02&rft.volume=52&rft.issue=1&rft.spage=171&rft.epage=174&rft.pages=171-174&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576718017545&rft_dat=%3Cproquest_cross%3E2175837511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2966-763c2e91b3d0568131e79d2e24c703ddf1bf2c49394a47afc59b2dc4c38cc97e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2175837511&rft_id=info:pmid/&rfr_iscdi=true